Evaluation methods and measures for causal learning algorithms

L Cheng, R Guo, R Moraffah, P Sheth… - IEEE Transactions …, 2022 - ieeexplore.ieee.org
The convenient access to copious multifaceted data has encouraged machine learning
researchers to reconsider correlation-based learning and embrace the opportunity of …

Trustworthy graph learning: Reliability, explainability, and privacy protection

B Wu, Y Bian, H Zhang, J Li, J Yu, L Chen… - Proceedings of the 28th …, 2022 - dl.acm.org
Deep graph learning (DGL) has achieved remarkable progress in both business and
scientific areas ranging from finance and e-commerce, to drug and advanced material …

Artificial intelligence for science in quantum, atomistic, and continuum systems

X Zhang, L Wang, J Helwig, Y Luo, C Fu, Y **e… - arxiv preprint arxiv …, 2023 - arxiv.org
Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural
sciences. Today, AI has started to advance natural sciences by improving, accelerating, and …

[PDF][PDF] Learning invariant graph representations for out-of-distribution generalization

H Li, Z Zhang, X Wang, W Zhu - Advances in Neural …, 2022 - proceedings.neurips.cc
Graph representation learning has shown effectiveness when testing and training graph
data come from the same distribution, but most existing approaches fail to generalize under …

Discovering invariant rationales for graph neural networks

YX Wu, X Wang, A Zhang, X He, TS Chua - arxiv preprint arxiv …, 2022 - arxiv.org
Intrinsic interpretability of graph neural networks (GNNs) is to find a small subset of the input
graph's features--rationale--which guides the model prediction. Unfortunately, the leading …

Learning substructure invariance for out-of-distribution molecular representations

N Yang, K Zeng, Q Wu, X Jia… - Advances in Neural …, 2022 - proceedings.neurips.cc
Molecule representation learning (MRL) has been extensively studied and current methods
have shown promising power for various tasks, eg, molecular property prediction and target …

Combinatorial optimization and reasoning with graph neural networks

Q Cappart, D Chételat, EB Khalil, A Lodi… - Journal of Machine …, 2023 - jmlr.org
Combinatorial optimization is a well-established area in operations research and computer
science. Until recently, its methods have focused on solving problem instances in isolation …

Handling distribution shifts on graphs: An invariance perspective

Q Wu, H Zhang, J Yan, D Wipf - arxiv preprint arxiv:2202.02466, 2022 - arxiv.org
There is increasing evidence suggesting neural networks' sensitivity to distribution shifts, so
that research on out-of-distribution (OOD) generalization comes into the spotlight …

Good: A graph out-of-distribution benchmark

S Gui, X Li, L Wang, S Ji - Advances in Neural Information …, 2022 - proceedings.neurips.cc
Abstract Out-of-distribution (OOD) learning deals with scenarios in which training and test
data follow different distributions. Although general OOD problems have been intensively …

Learning causally invariant representations for out-of-distribution generalization on graphs

Y Chen, Y Zhang, Y Bian, H Yang… - Advances in …, 2022 - proceedings.neurips.cc
Despite recent success in using the invariance principle for out-of-distribution (OOD)
generalization on Euclidean data (eg, images), studies on graph data are still limited …