Introduction to radiomics
Radiomics is a rapidly evolving field of research concerned with the extraction of quantitative
metrics—the so-called radiomic features—within medical images. Radiomic features capture …
metrics—the so-called radiomic features—within medical images. Radiomic features capture …
Deep learning for tomographic image reconstruction
Deep-learning-based tomographic imaging is an important application of artificial
intelligence and a new frontier of machine learning. Deep learning has been widely used in …
intelligence and a new frontier of machine learning. Deep learning has been widely used in …
[HTML][HTML] Deep learning based synthesis of MRI, CT and PET: Review and analysis
Medical image synthesis represents a critical area of research in clinical decision-making,
aiming to overcome the challenges associated with acquiring multiple image modalities for …
aiming to overcome the challenges associated with acquiring multiple image modalities for …
Current advances and future perspectives of image fusion: A comprehensive review
Multiple imaging modalities can be combined to provide more information about the real
world than a single modality alone. Infrared images discriminate targets with respect to their …
world than a single modality alone. Infrared images discriminate targets with respect to their …
A review on medical imaging synthesis using deep learning and its clinical applications
This paper reviewed the deep learning‐based studies for medical imaging synthesis and its
clinical application. Specifically, we summarized the recent developments of deep learning …
clinical application. Specifically, we summarized the recent developments of deep learning …
Medical imaging and nuclear medicine: a Lancet Oncology Commission
The diagnosis and treatment of patients with cancer requires access to imaging to ensure
accurate management decisions and optimal outcomes. Our global assessment of imaging …
accurate management decisions and optimal outcomes. Our global assessment of imaging …
[HTML][HTML] The promise of artificial intelligence and deep learning in PET and SPECT imaging
This review sets out to discuss the foremost applications of artificial intelligence (AI),
particularly deep learning (DL) algorithms, in single-photon emission computed tomography …
particularly deep learning (DL) algorithms, in single-photon emission computed tomography …
Deep learning for PET image reconstruction
This article reviews the use of a subdiscipline of artificial intelligence (AI), deep learning, for
the reconstruction of images in positron emission tomography (PET). Deep learning can be …
the reconstruction of images in positron emission tomography (PET). Deep learning can be …
Electron microscopy studies of soft nanomaterials
This review highlights recent efforts on applying electron microscopy (EM) to soft (including
biological) nanomaterials. We will show how developments of both the hardware and …
biological) nanomaterials. We will show how developments of both the hardware and …
Supervised learning with cyclegan for low-dose FDG PET image denoising
PET imaging involves radiotracer injections, raising concerns about the risk of radiation
exposure. To minimize the potential risk, one way is to reduce the injected tracer. However …
exposure. To minimize the potential risk, one way is to reduce the injected tracer. However …