Introduction to radiomics

ME Mayerhoefer, A Materka, G Langs… - Journal of Nuclear …, 2020 - Soc Nuclear Med
Radiomics is a rapidly evolving field of research concerned with the extraction of quantitative
metrics—the so-called radiomic features—within medical images. Radiomic features capture …

Deep learning for tomographic image reconstruction

G Wang, JC Ye, B De Man - Nature machine intelligence, 2020 - nature.com
Deep-learning-based tomographic imaging is an important application of artificial
intelligence and a new frontier of machine learning. Deep learning has been widely used in …

[HTML][HTML] Deep learning based synthesis of MRI, CT and PET: Review and analysis

S Dayarathna, KT Islam, S Uribe, G Yang, M Hayat… - Medical image …, 2024 - Elsevier
Medical image synthesis represents a critical area of research in clinical decision-making,
aiming to overcome the challenges associated with acquiring multiple image modalities for …

Current advances and future perspectives of image fusion: A comprehensive review

S Karim, G Tong, J Li, A Qadir, U Farooq, Y Yu - Information Fusion, 2023 - Elsevier
Multiple imaging modalities can be combined to provide more information about the real
world than a single modality alone. Infrared images discriminate targets with respect to their …

A review on medical imaging synthesis using deep learning and its clinical applications

T Wang, Y Lei, Y Fu, JF Wynne… - Journal of applied …, 2021 - Wiley Online Library
This paper reviewed the deep learning‐based studies for medical imaging synthesis and its
clinical application. Specifically, we summarized the recent developments of deep learning …

Medical imaging and nuclear medicine: a Lancet Oncology Commission

H Hricak, M Abdel-Wahab, R Atun, MM Lette… - The Lancet …, 2021 - thelancet.com
The diagnosis and treatment of patients with cancer requires access to imaging to ensure
accurate management decisions and optimal outcomes. Our global assessment of imaging …

[HTML][HTML] The promise of artificial intelligence and deep learning in PET and SPECT imaging

H Arabi, A AkhavanAllaf, A Sanaat, I Shiri, H Zaidi - Physica Medica, 2021 - Elsevier
This review sets out to discuss the foremost applications of artificial intelligence (AI),
particularly deep learning (DL) algorithms, in single-photon emission computed tomography …

Deep learning for PET image reconstruction

AJ Reader, G Corda, A Mehranian… - … on Radiation and …, 2020 - ieeexplore.ieee.org
This article reviews the use of a subdiscipline of artificial intelligence (AI), deep learning, for
the reconstruction of images in positron emission tomography (PET). Deep learning can be …

Electron microscopy studies of soft nanomaterials

Z Lyu, L Yao, W Chen, FC Kalutantirige… - Chemical …, 2023 - ACS Publications
This review highlights recent efforts on applying electron microscopy (EM) to soft (including
biological) nanomaterials. We will show how developments of both the hardware and …

Supervised learning with cyclegan for low-dose FDG PET image denoising

L Zhou, JD Schaefferkoetter, IWK Tham, G Huang… - Medical image …, 2020 - Elsevier
PET imaging involves radiotracer injections, raising concerns about the risk of radiation
exposure. To minimize the potential risk, one way is to reduce the injected tracer. However …