Machine learning: Algorithms, real-world applications and research directions
IH Sarker - SN computer science, 2021 - Springer
In the current age of the Fourth Industrial Revolution (4 IR or Industry 4.0), the digital world
has a wealth of data, such as Internet of Things (IoT) data, cybersecurity data, mobile data …
has a wealth of data, such as Internet of Things (IoT) data, cybersecurity data, mobile data …
A comprehensive survey of clustering algorithms
Data analysis is used as a common method in modern science research, which is across
communication science, computer science and biology science. Clustering, as the basic …
communication science, computer science and biology science. Clustering, as the basic …
DBSCAN revisited, revisited: why and how you should (still) use DBSCAN
At SIGMOD 2015, an article was presented with the title “DBSCAN Revisited: Mis-Claim, Un-
Fixability, and Approximation” that won the conference's best paper award. In this technical …
Fixability, and Approximation” that won the conference's best paper award. In this technical …
Data Mining The Text Book
C Aggarwal - 2015 - Springer
This textbook explores the different aspects of data mining from the fundamentals to the
complex data types and their applications, capturing the wide diversity of problem domains …
complex data types and their applications, capturing the wide diversity of problem domains …
A review of clustering techniques and developments
This paper presents a comprehensive study on clustering: exiting methods and
developments made at various times. Clustering is defined as an unsupervised learning …
developments made at various times. Clustering is defined as an unsupervised learning …
Time-series clustering–a decade review
Clustering is a solution for classifying enormous data when there is not any early knowledge
about classes. With emerging new concepts like cloud computing and big data and their vast …
about classes. With emerging new concepts like cloud computing and big data and their vast …
[BOOK][B] Ensemble methods: foundations and algorithms
ZH Zhou - 2025 - books.google.com
Ensemble methods that train multiple learners and then combine them to use, with Boosting
and Bagging as representatives, are well-known machine learning approaches. It has …
and Bagging as representatives, are well-known machine learning approaches. It has …
Data science and analytics: an overview from data-driven smart computing, decision-making and applications perspective
IH Sarker - SN Computer Science, 2021 - Springer
The digital world has a wealth of data, such as internet of things (IoT) data, business data,
health data, mobile data, urban data, security data, and many more, in the current age of the …
health data, mobile data, urban data, security data, and many more, in the current age of the …
[BOOK][B] Data mining: concepts and techniques
Data Mining: Concepts and Techniques, Fourth Edition introduces concepts, principles, and
methods for mining patterns, knowledge, and models from various kinds of data for diverse …
methods for mining patterns, knowledge, and models from various kinds of data for diverse …
LOF: identifying density-based local outliers
For many KDD applications, such as detecting criminal activities in E-commerce, finding the
rare instances or the outliers, can be more interesting than finding the common patterns …
rare instances or the outliers, can be more interesting than finding the common patterns …