Federated learning for connected and automated vehicles: A survey of existing approaches and challenges

VP Chellapandi, L Yuan, CG Brinton… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
Machine learning (ML) is widely used for key tasks in Connected and Automated Vehicles
(CAV), including perception, planning, and control. However, its reliance on vehicular data …

A systematic review of federated learning: Challenges, aggregation methods, and development tools

BS Guendouzi, S Ouchani, HEL Assaad… - Journal of Network and …, 2023 - Elsevier
Since its inception in 2016, federated learning has evolved into a highly promising decentral-
ized machine learning approach, facilitating collaborative model training across numerous …

Decentralized federated learning: A survey and perspective

L Yuan, Z Wang, L Sun, SY Philip… - IEEE Internet of Things …, 2024 - ieeexplore.ieee.org
Federated learning (FL) has been gaining attention for its ability to share knowledge while
maintaining user data, protecting privacy, increasing learning efficiency, and reducing …

Improving the model consistency of decentralized federated learning

Y Shi, L Shen, K Wei, Y Sun, B Yuan… - International …, 2023 - proceedings.mlr.press
To mitigate the privacy leakages and communication burdens of Federated Learning (FL),
decentralized FL (DFL) discards the central server and each client only communicates with …

[HTML][HTML] Fedstellar: A platform for decentralized federated learning

ETM Beltrán, ÁLP Gómez, C Feng… - Expert Systems with …, 2024 - Elsevier
Abstract In 2016, Google proposed Federated Learning (FL) as a novel paradigm to train
Machine Learning (ML) models across the participants of a federation while preserving data …

Distributed foundation models for multi-modal learning in 6G wireless networks

J Du, T Lin, C Jiang, Q Yang… - IEEE Wireless …, 2024 - ieeexplore.ieee.org
Benefiting from the ability to process and integrate data from various modalities, multi-modal
foundation models (FMs) facilitate potential applications across a range of fields, including …

Federated learning for green and sustainable 6G IIoT applications

VK Quy, DC Nguyen, D Van Anh, NM Quy - Internet of Things, 2024 - Elsevier
The 6th generation mobile network (6G) is expected to be launched in the early 2030s. The
architecture of 6G will be the convergence of space, air, ground, and undersea networks …

[HTML][HTML] Federated learning enables 6 G communication technology: Requirements, applications, and integrated with intelligence framework

MK Hasan, AKMA Habib, S Islam, N Safie… - Alexandria Engineering …, 2024 - Elsevier
The 5 G networks are effectively deployed worldwide, and academia and industries have
begun looking at 6 G network communication technology for consumer electronics …

Transitioning from federated learning to quantum federated learning in internet of things: A comprehensive survey

C Qiao, M Li, Y Liu, Z Tian - IEEE Communications Surveys & …, 2024 - ieeexplore.ieee.org
Quantum Federated Learning (QFL) recently becomes a promising approach with the
potential to revolutionize Machine Learning (ML). It merges the established strengths of …

Edge intelligence for internet of vehicles: A survey

G Yan, K Liu, C Liu, J Zhang - IEEE Transactions on Consumer …, 2024 - ieeexplore.ieee.org
The Internet of Vehicles (IoV) has become a fundamental platform for advancing Intelligent
Transportation Systems (ITSs) and Intelligent Connected Vehicles (ICVs). However, the …