A review of deep learning for renewable energy forecasting

H Wang, Z Lei, X Zhang, B Zhou, J Peng - Energy Conversion and …, 2019 - Elsevier
As renewable energy becomes increasingly popular in the global electric energy grid,
improving the accuracy of renewable energy forecasting is critical to power system planning …

A systematic review of deep transfer learning for machinery fault diagnosis

C Li, S Zhang, Y Qin, E Estupinan - Neurocomputing, 2020 - Elsevier
With the popularization of the intelligent manufacturing, much attention has been paid in
such intelligent computing methods as deep learning ones for machinery fault diagnosis …

Forecasting gold price using a novel hybrid model with ICEEMDAN and LSTM-CNN-CBAM

Y Liang, Y Lin, Q Lu - Expert Systems with Applications, 2022 - Elsevier
Gold price has always played an important role in the world economy and finance. In order
to predict the gold price more accurately, this paper proposes a novel decomposition …

Applications of random forest in multivariable response surface for short-term load forecasting

GF Fan, LZ Zhang, M Yu, WC Hong, SQ Dong - International Journal of …, 2022 - Elsevier
Accurate load forecasting is helpful for optimizing the use of power resources. To this end,
this investigation proposes a hybrid model for short-term load forecasting, namely the RF …

A review on renewable energy and electricity requirement forecasting models for smart grid and buildings

T Ahmad, H Zhang, B Yan - Sustainable Cities and Society, 2020 - Elsevier
The benefits of renewable energy are that it is sustainable and is low in environmental
pollution. Growing load requirement, global warming, and energy crisis need energy …

Forecasting short-term electricity load using hybrid support vector regression with grey catastrophe and random forest modeling

GF Fan, M Yu, SQ Dong, YH Yeh, WC Hong - Utilities Policy, 2021 - Elsevier
This paper develops a novel short-term load forecasting model that hybridizes several
machine learning methods, such as support vector regression (SVR), grey catastrophe (GC …

A novel fault diagnosis method based on CNN and LSTM and its application in fault diagnosis for complex systems

T Huang, Q Zhang, X Tang, S Zhao, X Lu - Artificial Intelligence Review, 2022 - Springer
Fault diagnosis plays an important role in actual production activities. As large amounts of
data can be collected efficiently and economically, data-driven methods based on deep …

Deep learning-based forecasting approach in smart grids with microclustering and bidirectional LSTM network

H Jahangir, H Tayarani, SS Gougheri… - IEEE Transactions …, 2020 - ieeexplore.ieee.org
Uncertainty modeling of renewable energy sources, load demand, electricity price, etc.
create a high volume of data in smart grids. Accordingly, in this article, a precise forecasting …

Forecasting energy use in buildings using artificial neural networks: A review

J Runge, R Zmeureanu - Energies, 2019 - mdpi.com
During the past century, energy consumption and associated greenhouse gas emissions
have increased drastically due to a wide variety of factors including both technological and …

Forecasting crude oil prices based on variational mode decomposition and random sparse Bayesian learning

T Li, Z Qian, W Deng, D Zhang, H Lu, S Wang - Applied Soft Computing, 2021 - Elsevier
Accurately forecasting crude oil prices has drawn much attention from researchers,
investors, producers, and consumers. However, the complexity of crude oil prices makes it a …