Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors

QK Feng, SL Zhong, JY Pei, Y Zhao, DL Zhang… - Chemical …, 2021 - ACS Publications
With the development of advanced electronic devices and electric power systems, polymer-
based dielectric film capacitors with high energy storage capability have become particularly …

Design of functional and sustainable polymers assisted by artificial intelligence

H Tran, R Gurnani, C Kim, G Pilania, HK Kwon… - Nature Reviews …, 2024 - nature.com
Artificial intelligence (AI)-based methods continue to make inroads into accelerated
materials design and development. Here, we review AI-enabled advances made in the …

[HTML][HTML] 3D printing of biodegradable polymers and their composites–Current state-of-the-art, properties, applications, and machine learning for potential future …

SAV Dananjaya, VS Chevali, JP Dear, P Potluri… - Progress in Materials …, 2024 - Elsevier
This review paper comprehensively examines the dynamic landscape of 3D printing and
Machine Learning utilizing biodegradable polymers and their composites, presenting a …

AI-assisted discovery of high-temperature dielectrics for energy storage

R Gurnani, S Shukla, D Kamal, C Wu, J Hao… - Nature …, 2024 - nature.com
Electrostatic capacitors play a crucial role as energy storage devices in modern electrical
systems. Energy density, the figure of merit for electrostatic capacitors, is primarily …

Polymer informatics: Current status and critical next steps

L Chen, G Pilania, R Batra, TD Huan, C Kim… - Materials Science and …, 2021 - Elsevier
Artificial intelligence (AI) based approaches are beginning to impact several domains of
human life, science and technology. Polymer informatics is one such domain where AI and …

A graph representation of molecular ensembles for polymer property prediction

M Aldeghi, CW Coley - Chemical Science, 2022 - pubs.rsc.org
Synthetic polymers are versatile and widely used materials. Similar to small organic
molecules, a large chemical space of such materials is hypothetically accessible …

Benchmarking machine learning models for polymer informatics: an example of glass transition temperature

L Tao, V Varshney, Y Li - Journal of Chemical Information and …, 2021 - ACS Publications
In the field of polymer informatics, utilizing machine learning (ML) techniques to evaluate the
glass transition temperature T g and other properties of polymers has attracted extensive …

polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics

C Kuenneth, R Ramprasad - Nature Communications, 2023 - nature.com
Polymers are a vital part of everyday life. Their chemical universe is so large that it presents
unprecedented opportunities as well as significant challenges to identify suitable application …

Machine-Learning-Guided Discovery of 19F MRI Agents Enabled by Automated Copolymer Synthesis

M Reis, F Gusev, NG Taylor, SH Chung… - Journal of the …, 2021 - ACS Publications
Modern polymer science suffers from the curse of multidimensionality. The large chemical
space imposed by including combinations of monomers into a statistical copolymer …

[HTML][HTML] Synthesis, properties, applications, 3D printing and machine learning of graphene quantum dots in polymer nanocomposites

V Dananjaya, S Marimuthu, R Yang, AN Grace… - Progress in Materials …, 2024 - Elsevier
This comprehensive review discusses the recent progress in synthesis, properties,
applications, 3D printing and machine learning of graphene quantum dots (GQDs) in …