Infinite volume and atoms at the bottom of the spectrum

S Edwards, M Fraczyk, M Lee, H Oh - arxiv preprint arxiv:2304.14565, 2023 - arxiv.org
Let $ G $ be a higher rank simple real algebraic group, or more generally, any semisimple
real algebraic group with no rank one factors and $ X $ the associated Riemannian …

Polyhedral bounds on the joint spectrum and temperedness of locally symmetric spaces

C Lutsko, T Weich, LL Wolf - arxiv preprint arxiv:2402.02530, 2024 - arxiv.org
Given a real semisimple connected Lie group $ G $ and a discrete torsion-free subgroup
$\Gamma< G $ we prove a precise connection between growth rates of the group $\Gamma …

-spectrum, growth indicator function and critical exponent on locally symmetric spaces

LL Wolf, HW Zhang - arxiv preprint arxiv:2311.11770, 2023 - arxiv.org
In this short note we observe, on locally symmetric spaces of higher rank, a connection
between the growth indicator function introduced by Quint and the modified critical exponent …

Temperedness of locally symmetric spaces: The product case

T Weich, LL Wolf - Geometriae Dedicata, 2024 - Springer
Abstract Let\(X= X_1\times X_2\) be a product of two rank one symmetric spaces of non-
compact type and\(\Gamma\) a torsion-free discrete subgroup in\(G_1\times G_2\). We show …

Geometric estimates on weighted p-fundamental tone and applications to the first eigenvalue of submanifolds with bounded mean curvature

A Abolarinwa, A Taheri - Complex Variables and Elliptic Equations, 2022 - Taylor & Francis
This paper generalizes to the context of smooth metric measure spaces and submanifolds
with negative sectional curvatures some well-known geometric estimates on the p …

𝐿²-spectrum, growth indicator function and critical exponent on locally symmetric spaces

L Wolf, HW Zhang - Proceedings of the American Mathematical Society, 2024 - ams.org
In this short note we observe, on locally symmetric spaces of higher rank, a connection
between the growth indicator function introduced by Quint and the modified critical exponent …

Quantum resonances and scattering poles of classical rank one locally symmetric spaces

B Delarue, J Hilgert - arxiv preprint arxiv:2403.14426, 2024 - arxiv.org
For negatively curved symmetric spaces it is known that the poles of the scattering matrices
defined via the standard intertwining operators for the spherical principal representations of …

[PDF][PDF] Comptes Rendus Mathématique

S Edwards, M Fraczyk, M Lee… - Comptes …, 2024 - durham-repository.worktribe.com

Infinite volume and atoms at the bottom of the spectrum

S Edwards, M Fraczyk, M Lee… - Comptes …, 2024 - comptes-rendus.academie-sciences …
Let G be a higher rank simple real algebraic group, or more generally, any semisimple real
algebraic group with no rank one factors and X the associated Riemannian symmetric …

Équation des ondes sur les espaces symétriques et localement symétriques de type non compact

HW Zhang - 2020 - theses.hal.science
Cette thèse est consacrée à l'étude de l'équation des ondes sur les espaces symétriques et
localement symétriques de type non compact. Un de nos principaux résultats est l'obtention …