Infinite volume and atoms at the bottom of the spectrum
Let $ G $ be a higher rank simple real algebraic group, or more generally, any semisimple
real algebraic group with no rank one factors and $ X $ the associated Riemannian …
real algebraic group with no rank one factors and $ X $ the associated Riemannian …
Polyhedral bounds on the joint spectrum and temperedness of locally symmetric spaces
C Lutsko, T Weich, LL Wolf - arxiv preprint arxiv:2402.02530, 2024 - arxiv.org
Given a real semisimple connected Lie group $ G $ and a discrete torsion-free subgroup
$\Gamma< G $ we prove a precise connection between growth rates of the group $\Gamma …
$\Gamma< G $ we prove a precise connection between growth rates of the group $\Gamma …
-spectrum, growth indicator function and critical exponent on locally symmetric spaces
LL Wolf, HW Zhang - arxiv preprint arxiv:2311.11770, 2023 - arxiv.org
In this short note we observe, on locally symmetric spaces of higher rank, a connection
between the growth indicator function introduced by Quint and the modified critical exponent …
between the growth indicator function introduced by Quint and the modified critical exponent …
Temperedness of locally symmetric spaces: The product case
T Weich, LL Wolf - Geometriae Dedicata, 2024 - Springer
Abstract Let\(X= X_1\times X_2\) be a product of two rank one symmetric spaces of non-
compact type and\(\Gamma\) a torsion-free discrete subgroup in\(G_1\times G_2\). We show …
compact type and\(\Gamma\) a torsion-free discrete subgroup in\(G_1\times G_2\). We show …
Geometric estimates on weighted p-fundamental tone and applications to the first eigenvalue of submanifolds with bounded mean curvature
This paper generalizes to the context of smooth metric measure spaces and submanifolds
with negative sectional curvatures some well-known geometric estimates on the p …
with negative sectional curvatures some well-known geometric estimates on the p …
𝐿²-spectrum, growth indicator function and critical exponent on locally symmetric spaces
L Wolf, HW Zhang - Proceedings of the American Mathematical Society, 2024 - ams.org
In this short note we observe, on locally symmetric spaces of higher rank, a connection
between the growth indicator function introduced by Quint and the modified critical exponent …
between the growth indicator function introduced by Quint and the modified critical exponent …
Quantum resonances and scattering poles of classical rank one locally symmetric spaces
For negatively curved symmetric spaces it is known that the poles of the scattering matrices
defined via the standard intertwining operators for the spherical principal representations of …
defined via the standard intertwining operators for the spherical principal representations of …
[PDF][PDF] Comptes Rendus Mathématique
S Edwards, M Fraczyk, M Lee… - Comptes …, 2024 - durham-repository.worktribe.com
Infinite volume and atoms at the bottom of the spectrum
S Edwards, M Fraczyk, M Lee… - Comptes …, 2024 - comptes-rendus.academie-sciences …
Let G be a higher rank simple real algebraic group, or more generally, any semisimple real
algebraic group with no rank one factors and X the associated Riemannian symmetric …
algebraic group with no rank one factors and X the associated Riemannian symmetric …
Équation des ondes sur les espaces symétriques et localement symétriques de type non compact
HW Zhang - 2020 - theses.hal.science
Cette thèse est consacrée à l'étude de l'équation des ondes sur les espaces symétriques et
localement symétriques de type non compact. Un de nos principaux résultats est l'obtention …
localement symétriques de type non compact. Un de nos principaux résultats est l'obtention …