[PDF][PDF] Mesh denoising via cascaded normal regression.

PS Wang, Y Liu, X Tong - ACM Trans. Graph., 2016 - researchgate.net
We present a data-driven approach for mesh denoising. Our key idea is to formulate the
denoising process with cascaded non-linear regression functions and learn them from a set …

Part123: part-aware 3d reconstruction from a single-view image

A Liu, C Lin, Y Liu, X Long, Z Dou, HX Guo… - ACM SIGGRAPH 2024 …, 2024 - dl.acm.org
Recently, the emergence of diffusion models has opened up new opportunities for single-
view reconstruction. However, all the existing methods represent the target object as a …

RFEPS: Reconstructing feature-line equipped polygonal surface

R Xu, Z Wang, Z Dou, C Zong, S **n, M Jiang… - ACM Transactions on …, 2022 - dl.acm.org
Feature lines are important geometric cues in characterizing the structure of a CAD model.
Despite great progress in both explicit reconstruction and implicit reconstruction, it remains a …

Point cloud denoising via feature graph Laplacian regularization

C Dinesh, G Cheung, IV Bajić - IEEE Transactions on Image …, 2020 - ieeexplore.ieee.org
Point cloud is a collection of 3D coordinates that are discrete geometric samples of an
object's 2D surfaces. Imperfection in the acquisition process means that point clouds are …

GCN-denoiser: mesh denoising with graph convolutional networks

Y Shen, H Fu, Z Du, X Chen, E Burnaev… - ACM Transactions on …, 2022 - dl.acm.org
In this article, we present GCN-Denoiser, a novel feature-preserving mesh denoising
method based on graph convolutional networks (GCNs). Unlike previous learning-based …

Low rank matrix approximation for 3D geometry filtering

X Lu, S Schaefer, J Luo, L Ma… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
We propose a robust normal estimation method for both point clouds and meshes using a
low rank matrix approximation algorithm. First, we compute a local isotropic structure for …

DNF-Net: A deep normal filtering network for mesh denoising

X Li, R Li, L Zhu, CW Fu… - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
This article presents a deep normal filtering network, called DNF-Net, for mesh denoising. To
better capture local geometry, our network processes the mesh in terms of local patches …

Geometric and learning-based mesh denoising: a comprehensive survey

H Chen, Z Li, M Wei, J Wang - ACM Transactions on Multimedia …, 2023 - dl.acm.org
Mesh denoising is a fundamental problem in digital geometry processing. It seeks to remove
surface noise while preserving surface intrinsic signals as accurately as possible. While …

Multi-patch collaborative point cloud denoising via low-rank recovery with graph constraint

H Chen, M Wei, Y Sun, X **e… - IEEE transactions on …, 2019 - ieeexplore.ieee.org
Point cloud is the primary source from 3D scanners and depth cameras. It usually contains
more raw geometric features, as well as higher levels of noise than the reconstructed mesh …

[PDF][PDF] Paparazzi: surface editing by way of multi-view image processing.

HTD Liu, M Tao, A Jacobson - ACM Trans. Graph., 2018 - dgp.toronto.edu
Decades of digital image processing research has culminated in a wealth of complex filters
and effects. These filters are not only important as pre-and post-processes to other …