AlphaFold2 and its applications in the fields of biology and medicine

Z Yang, X Zeng, Y Zhao, R Chen - Signal Transduction and Targeted …, 2023 - nature.com
Abstract AlphaFold2 (AF2) is an artificial intelligence (AI) system developed by DeepMind
that can predict three-dimensional (3D) structures of proteins from amino acid sequences …

Deep learning and artificial intelligence in sustainability: a review of SDGs, renewable energy, and environmental health

Z Fan, Z Yan, S Wen - Sustainability, 2023 - mdpi.com
Artificial intelligence (AI) and deep learning (DL) have shown tremendous potential in
driving sustainability across various sectors. This paper reviews recent advancements in AI …

A comprehensive review of digital twin—part 1: modeling and twinning enabling technologies

A Thelen, X Zhang, O Fink, Y Lu, S Ghosh… - Structural and …, 2022 - Springer
As an emerging technology in the era of Industry 4.0, digital twin is gaining unprecedented
attention because of its promise to further optimize process design, quality control, health …

A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: Theories, applications and challenges

W Li, R Huang, J Li, Y Liao, Z Chen, G He… - … Systems and Signal …, 2022 - Elsevier
Abstract Deep Transfer Learning (DTL) is a new paradigm of machine learning, which can
not only leverage the advantages of Deep Learning (DL) in feature representation, but also …

Uncertainty quantification in machine learning for engineering design and health prognostics: A tutorial

V Nemani, L Biggio, X Huan, Z Hu, O Fink… - … Systems and Signal …, 2023 - Elsevier
On top of machine learning (ML) models, uncertainty quantification (UQ) functions as an
essential layer of safety assurance that could lead to more principled decision making by …

On the analyses of medical images using traditional machine learning techniques and convolutional neural networks

S Iqbal, A N. Qureshi, J Li, T Mahmood - Archives of Computational …, 2023 - Springer
Convolutional neural network (CNN) has shown dissuasive accomplishment on different
areas especially Object Detection, Segmentation, Reconstruction (2D and 3D), Information …

[HTML][HTML] A review on autoencoder based representation learning for fault detection and diagnosis in industrial processes

J Qian, Z Song, Y Yao, Z Zhu, X Zhang - Chemometrics and Intelligent …, 2022 - Elsevier
Process monitoring technologies play a key role in maintaining the steady state of industrial
processes. However, with the increasing complexity of modern industrial processes …

Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights

A Malekloo, E Ozer, M AlHamaydeh… - Structural Health …, 2022 - journals.sagepub.com
Conventional damage detection techniques are gradually being replaced by state-of-the-art
smart monitoring and decision-making solutions. Near real-time and online damage …

[HTML][HTML] Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry

A Theissler, J Pérez-Velázquez, M Kettelgerdes… - Reliability engineering & …, 2021 - Elsevier
Recent developments in maintenance modelling fueled by data-based approaches such as
machine learning (ML), have enabled a broad range of applications. In the automotive …

Prognostics and health management of Lithium-ion battery using deep learning methods: A review

Y Zhang, YF Li - Renewable and sustainable energy reviews, 2022 - Elsevier
Prognostics and health management (PHM) is developed to guarantee the safety and
reliability of Lithium-ion (Li-ion) battery during operations. Due to the advantages of deep …