[HTML][HTML] A comprehensive survey of image augmentation techniques for deep learning

M Xu, S Yoon, A Fuentes, DS Park - Pattern Recognition, 2023 - Elsevier
Although deep learning has achieved satisfactory performance in computer vision, a large
volume of images is required. However, collecting images is often expensive and …

[HTML][HTML] Review of image classification algorithms based on convolutional neural networks

L Chen, S Li, Q Bai, J Yang, S Jiang, Y Miao - Remote Sensing, 2021 - mdpi.com
Image classification has always been a hot research direction in the world, and the
emergence of deep learning has promoted the development of this field. Convolutional …

Momentum contrast for unsupervised visual representation learning

K He, H Fan, Y Wu, S **e… - Proceedings of the IEEE …, 2020 - openaccess.thecvf.com
Abstract We present Momentum Contrast (MoCo) for unsupervised visual representation
learning. From a perspective on contrastive learning as dictionary look-up, we build a …

Supervised contrastive learning

P Khosla, P Teterwak, C Wang… - Advances in neural …, 2020 - proceedings.neurips.cc
Contrastive learning applied to self-supervised representation learning has seen a
resurgence in recent years, leading to state of the art performance in the unsupervised …

Toward causal representation learning

B Schölkopf, F Locatello, S Bauer, NR Ke… - Proceedings of the …, 2021 - ieeexplore.ieee.org
The two fields of machine learning and graphical causality arose and are developed
separately. However, there is, now, cross-pollination and increasing interest in both fields to …

[HTML][HTML] Deep learning in food category recognition

Y Zhang, L Deng, H Zhu, W Wang, Z Ren, Q Zhou… - Information …, 2023 - Elsevier
Integrating artificial intelligence with food category recognition has been a field of interest for
research for the past few decades. It is potentially one of the next steps in revolutionizing …

Randaugment: Practical automated data augmentation with a reduced search space

ED Cubuk, B Zoph, J Shlens… - Proceedings of the IEEE …, 2020 - openaccess.thecvf.com
Recent work on automated augmentation strategies has led to state-of-the-art results in
image classification and object detection. An obstacle to a large-scale adoption of these …

Self-supervised learning of pretext-invariant representations

I Misra, L Maaten - … of the IEEE/CVF conference on …, 2020 - openaccess.thecvf.com
The goal of self-supervised learning from images is to construct image representations that
are semantically meaningful via pretext tasks that do not require semantic annotations. Many …

Image data augmentation for deep learning: A survey

S Yang, W **ao, M Zhang, S Guo, J Zhao… - arxiv preprint arxiv …, 2022 - arxiv.org
Deep learning has achieved remarkable results in many computer vision tasks. Deep neural
networks typically rely on large amounts of training data to avoid overfitting. However …

AutoML: A survey of the state-of-the-art

X He, K Zhao, X Chu - Knowledge-based systems, 2021 - Elsevier
Deep learning (DL) techniques have obtained remarkable achievements on various tasks,
such as image recognition, object detection, and language modeling. However, building a …