Fault diagnosis in rotating machines based on transfer learning: Literature review

I Misbah, CKM Lee, KL Keung - Knowledge-Based Systems, 2024 - Elsevier
With the emergence of machine learning methods, data-driven fault diagnosis has gained
significant attention in recent years. However, traditional data-driven diagnosis approaches …

A systematic review on data scarcity problem in deep learning: solution and applications

MA Bansal, DR Sharma, DM Kathuria - ACM Computing Surveys (Csur), 2022 - dl.acm.org
Recent advancements in deep learning architecture have increased its utility in real-life
applications. Deep learning models require a large amount of data to train the model. In …

A survey on aspect-based sentiment analysis: Tasks, methods, and challenges

W Zhang, X Li, Y Deng, L Bing… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
As an important fine-grained sentiment analysis problem, aspect-based sentiment analysis
(ABSA), aiming to analyze and understand people's opinions at the aspect level, has been …

Transfer learning for drug discovery

C Cai, S Wang, Y Xu, W Zhang, K Tang… - Journal of Medicinal …, 2020 - ACS Publications
The data sets available to train models for in silico drug discovery efforts are often small.
Indeed, the sparse availability of labeled data is a major barrier to artificial-intelligence …

A survey of transfer learning

K Weiss, TM Khoshgoftaar, DD Wang - Journal of Big data, 2016 - Springer
Abstract Machine learning and data mining techniques have been used in numerous real-
world applications. An assumption of traditional machine learning methodologies is the …

Mosi: multimodal corpus of sentiment intensity and subjectivity analysis in online opinion videos

A Zadeh, R Zellers, E Pincus, LP Morency - arxiv preprint arxiv …, 2016 - arxiv.org
People are sharing their opinions, stories and reviews through online video sharing
websites every day. Studying sentiment and subjectivity in these opinion videos is …

Knowledge transfer for rotary machine fault diagnosis

R Yan, F Shen, C Sun, X Chen - IEEE Sensors Journal, 2019 - ieeexplore.ieee.org
This paper intends to provide an overview on recent development of knowledge transfer for
rotary machine fault diagnosis (RMFD) by using different transfer learning techniques. After …

Statistical investigations of transfer learning-based methodology for short-term building energy predictions

C Fan, Y Sun, F **ao, J Ma, D Lee, J Wang, YC Tseng - Applied Energy, 2020 - Elsevier
The wide availability of massive building operational data has motivated the development of
advanced data-driven methods for building energy predictions. Existing data-driven …

ACGT-Net: Adaptive cuckoo refinement-based graph transfer network for hyperspectral image classification

Y Su, J Chen, L Gao, A Plaza, M Jiang… - … on Geoscience and …, 2023 - ieeexplore.ieee.org
Deep learning (DL) has brought many new trends for hyperspectral image classification
(HIC). Graph neural networks (GNNs) are models that fuse DL and structured data. Although …

[KİTAP][B] Sentiment analysis: Mining opinions, sentiments, and emotions

B Liu - 2020 - books.google.com
Sentiment analysis is the computational study of people's opinions, sentiments, emotions,
moods, and attitudes. This fascinating problem offers numerous research challenges, but …