Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Multi-agent deep reinforcement learning for multi-robot applications: A survey
J Orr, A Dutta - Sensors, 2023 - mdpi.com
Deep reinforcement learning has produced many success stories in recent years. Some
example fields in which these successes have taken place include mathematics, games …
example fields in which these successes have taken place include mathematics, games …
Reinforcement learning in robotic applications: a comprehensive survey
In recent trends, artificial intelligence (AI) is used for the creation of complex automated
control systems. Still, researchers are trying to make a completely autonomous system that …
control systems. Still, researchers are trying to make a completely autonomous system that …
Multi-agent deep reinforcement learning: a survey
The advances in reinforcement learning have recorded sublime success in various domains.
Although the multi-agent domain has been overshadowed by its single-agent counterpart …
Although the multi-agent domain has been overshadowed by its single-agent counterpart …
Multi-agent reinforcement learning: A selective overview of theories and algorithms
Recent years have witnessed significant advances in reinforcement learning (RL), which
has registered tremendous success in solving various sequential decision-making problems …
has registered tremendous success in solving various sequential decision-making problems …
An overview of multi-agent reinforcement learning from game theoretical perspective
Y Yang, J Wang - arxiv preprint arxiv:2011.00583, 2020 - arxiv.org
Following the remarkable success of the AlphaGO series, 2019 was a booming year that
witnessed significant advances in multi-agent reinforcement learning (MARL) techniques …
witnessed significant advances in multi-agent reinforcement learning (MARL) techniques …
Applications of deep reinforcement learning in communications and networking: A survey
This paper presents a comprehensive literature review on applications of deep
reinforcement learning (DRL) in communications and networking. Modern networks, eg …
reinforcement learning (DRL) in communications and networking. Modern networks, eg …
A distributional code for value in dopamine-based reinforcement learning
Since its introduction, the reward prediction error theory of dopamine has explained a wealth
of empirical phenomena, providing a unifying framework for understanding the …
of empirical phenomena, providing a unifying framework for understanding the …
Deep reinforcement learning for cyber security
The scale of Internet-connected systems has increased considerably, and these systems are
being exposed to cyberattacks more than ever. The complexity and dynamics of …
being exposed to cyberattacks more than ever. The complexity and dynamics of …
Multi-agent systems: A survey
Multi-agent systems (MASs) have received tremendous attention from scholars in different
disciplines, including computer science and civil engineering, as a means to solve complex …
disciplines, including computer science and civil engineering, as a means to solve complex …
A survey and critique of multiagent deep reinforcement learning
Deep reinforcement learning (RL) has achieved outstanding results in recent years. This has
led to a dramatic increase in the number of applications and methods. Recent works have …
led to a dramatic increase in the number of applications and methods. Recent works have …