Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection
Time series are the primary data type used to record dynamic system measurements and
generated in great volume by both physical sensors and online processes (virtual sensors) …
generated in great volume by both physical sensors and online processes (virtual sensors) …
Self-supervised learning for time series analysis: Taxonomy, progress, and prospects
Self-supervised learning (SSL) has recently achieved impressive performance on various
time series tasks. The most prominent advantage of SSL is that it reduces the dependence …
time series tasks. The most prominent advantage of SSL is that it reduces the dependence …
Spatio-temporal graph neural networks for predictive learning in urban computing: A survey
With recent advances in sensing technologies, a myriad of spatio-temporal data has been
generated and recorded in smart cities. Forecasting the evolution patterns of spatio-temporal …
generated and recorded in smart cities. Forecasting the evolution patterns of spatio-temporal …
A survey on generative diffusion models
Deep generative models have unlocked another profound realm of human creativity. By
capturing and generalizing patterns within data, we have entered the epoch of all …
capturing and generalizing patterns within data, we have entered the epoch of all …
Large models for time series and spatio-temporal data: A survey and outlook
Temporal data, notably time series and spatio-temporal data, are prevalent in real-world
applications. They capture dynamic system measurements and are produced in vast …
applications. They capture dynamic system measurements and are produced in vast …
Foundation models for time series analysis: A tutorial and survey
Time series analysis stands as a focal point within the data mining community, serving as a
cornerstone for extracting valuable insights crucial to a myriad of real-world applications …
cornerstone for extracting valuable insights crucial to a myriad of real-world applications …
Deciphering spatio-temporal graph forecasting: A causal lens and treatment
Abstract Spatio-Temporal Graph (STG) forecasting is a fundamental task in many real-world
applications. Spatio-Temporal Graph Neural Networks have emerged as the most popular …
applications. Spatio-Temporal Graph Neural Networks have emerged as the most popular …
Diffusion models for time-series applications: a survey
Diffusion models, a family of generative models based on deep learning, have become
increasingly prominent in cutting-edge machine learning research. With distinguished …
increasingly prominent in cutting-edge machine learning research. With distinguished …
Difftraj: Generating gps trajectory with diffusion probabilistic model
Pervasive integration of GPS-enabled devices and data acquisition technologies has led to
an exponential increase in GPS trajectory data, fostering advancements in spatial-temporal …
an exponential increase in GPS trajectory data, fostering advancements in spatial-temporal …
Spatial-temporal large language model for traffic prediction
Traffic prediction, an essential component for intelligent transportation systems, endeavours
to use historical data to foresee future traffic features at specific locations. Although existing …
to use historical data to foresee future traffic features at specific locations. Although existing …