[HTML][HTML] Pre-trained language models and their applications
Pre-trained language models have achieved striking success in natural language
processing (NLP), leading to a paradigm shift from supervised learning to pre-training …
processing (NLP), leading to a paradigm shift from supervised learning to pre-training …
A survey on contrastive self-supervised learning
Self-supervised learning has gained popularity because of its ability to avoid the cost of
annotating large-scale datasets. It is capable of adopting self-defined pseudolabels as …
annotating large-scale datasets. It is capable of adopting self-defined pseudolabels as …
Flava: A foundational language and vision alignment model
State-of-the-art vision and vision-and-language models rely on large-scale visio-linguistic
pretraining for obtaining good performance on a variety of downstream tasks. Generally …
pretraining for obtaining good performance on a variety of downstream tasks. Generally …
Vlmo: Unified vision-language pre-training with mixture-of-modality-experts
We present a unified Vision-Language pretrained Model (VLMo) that jointly learns a dual
encoder and a fusion encoder with a modular Transformer network. Specifically, we …
encoder and a fusion encoder with a modular Transformer network. Specifically, we …
[HTML][HTML] Pre-trained models: Past, present and future
Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved
great success and become a milestone in the field of artificial intelligence (AI). Owing to …
great success and become a milestone in the field of artificial intelligence (AI). Owing to …
COMET-22: Unbabel-IST 2022 submission for the metrics shared task
In this paper, we present the joint contribution of Unbabel and IST to the WMT 2022 Metrics
Shared Task. Our primary submission–dubbed COMET-22–is an ensemble between a …
Shared Task. Our primary submission–dubbed COMET-22–is an ensemble between a …
[PDF][PDF] mt5: A massively multilingual pre-trained text-to-text transformer
L Xue - arxiv preprint arxiv:2010.11934, 2020 - fq.pkwyx.com
The recent" Text-to-Text Transfer Transformer"(T5) leveraged a unified text-to-text format and
scale to attain state-of-the-art results on a wide variety of English-language NLP tasks. In this …
scale to attain state-of-the-art results on a wide variety of English-language NLP tasks. In this …
Contrastive representation learning: A framework and review
Contrastive Learning has recently received interest due to its success in self-supervised
representation learning in the computer vision domain. However, the origins of Contrastive …
representation learning in the computer vision domain. However, the origins of Contrastive …
Knowledge neurons in pretrained transformers
Large-scale pretrained language models are surprisingly good at recalling factual
knowledge presented in the training corpus. In this paper, we present preliminary studies on …
knowledge presented in the training corpus. In this paper, we present preliminary studies on …
Ammus: A survey of transformer-based pretrained models in natural language processing
KS Kalyan, A Rajasekharan, S Sangeetha - arxiv preprint arxiv …, 2021 - arxiv.org
Transformer-based pretrained language models (T-PTLMs) have achieved great success in
almost every NLP task. The evolution of these models started with GPT and BERT. These …
almost every NLP task. The evolution of these models started with GPT and BERT. These …