GAN-based anomaly detection: A review

X **a, X Pan, N Li, X He, L Ma, X Zhang, N Ding - Neurocomputing, 2022 - Elsevier
Supervised learning algorithms have shown limited use in the field of anomaly detection due
to the unpredictability and difficulty in acquiring abnormal samples. In recent years …

A unifying review of deep and shallow anomaly detection

L Ruff, JR Kauffmann, RA Vandermeulen… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Deep learning approaches to anomaly detection (AD) have recently improved the state of
the art in detection performance on complex data sets, such as large collections of images or …

Deep deterministic uncertainty: A new simple baseline

J Mukhoti, A Kirsch, J van Amersfoort… - Proceedings of the …, 2023 - openaccess.thecvf.com
Reliable uncertainty from deterministic single-forward pass models is sought after because
conventional methods of uncertainty quantification are computationally expensive. We take …

Out-of-distribution detection with deep nearest neighbors

Y Sun, Y Ming, X Zhu, Y Li - International Conference on …, 2022 - proceedings.mlr.press
Abstract Out-of-distribution (OOD) detection is a critical task for deploying machine learning
models in the open world. Distance-based methods have demonstrated promise, where …

Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging

S Azizi, L Culp, J Freyberg, B Mustafa, S Baur… - Nature Biomedical …, 2023 - nature.com
Abstract Machine-learning models for medical tasks can match or surpass the performance
of clinical experts. However, in settings differing from those of the training dataset, the …

Delving into out-of-distribution detection with vision-language representations

Y Ming, Z Cai, J Gu, Y Sun, W Li… - Advances in neural …, 2022 - proceedings.neurips.cc
Recognizing out-of-distribution (OOD) samples is critical for machine learning systems
deployed in the open world. The vast majority of OOD detection methods are driven by a …

On the importance of gradients for detecting distributional shifts in the wild

R Huang, A Geng, Y Li - Advances in Neural Information …, 2021 - proceedings.neurips.cc
Detecting out-of-distribution (OOD) data has become a critical component in ensuring the
safe deployment of machine learning models in the real world. Existing OOD detection …

Exploring the limits of out-of-distribution detection

S Fort, J Ren… - Advances in neural …, 2021 - proceedings.neurips.cc
Near out-of-distribution detection (OOD) is a major challenge for deep neural networks. We
demonstrate that large-scale pre-trained transformers can significantly improve the state-of …

Csi: Novelty detection via contrastive learning on distributionally shifted instances

J Tack, S Mo, J Jeong, J Shin - Advances in neural …, 2020 - proceedings.neurips.cc
Novelty detection, ie, identifying whether a given sample is drawn from outside the training
distribution, is essential for reliable machine learning. To this end, there have been many …

How to exploit hyperspherical embeddings for out-of-distribution detection?

Y Ming, Y Sun, O Dia, Y Li - arxiv preprint arxiv:2203.04450, 2022 - arxiv.org
Out-of-distribution (OOD) detection is a critical task for reliable machine learning. Recent
advances in representation learning give rise to distance-based OOD detection, where …