The evolution of distributed systems for graph neural networks and their origin in graph processing and deep learning: A survey

J Vatter, R Mayer, HA Jacobsen - ACM Computing Surveys, 2023 - dl.acm.org
Graph neural networks (GNNs) are an emerging research field. This specialized deep
neural network architecture is capable of processing graph structured data and bridges the …

A comprehensive survey of forgetting in deep learning beyond continual learning

Z Wang, E Yang, L Shen… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Forgetting refers to the loss or deterioration of previously acquired knowledge. While
existing surveys on forgetting have primarily focused on continual learning, forgetting is a …

A survey of machine unlearning

TT Nguyen, TT Huynh, Z Ren, PL Nguyen… - arxiv preprint arxiv …, 2022 - arxiv.org
Today, computer systems hold large amounts of personal data. Yet while such an
abundance of data allows breakthroughs in artificial intelligence, and especially machine …

Editing large language models: Problems, methods, and opportunities

Y Yao, P Wang, B Tian, S Cheng, Z Li, S Deng… - arxiv preprint arxiv …, 2023 - arxiv.org
Despite the ability to train capable LLMs, the methodology for maintaining their relevancy
and rectifying errors remains elusive. To this end, the past few years have witnessed a surge …

[HTML][HTML] Unveiling security, privacy, and ethical concerns of ChatGPT

X Wu, R Duan, J Ni - Journal of Information and Intelligence, 2024 - Elsevier
This paper delves into the realm of ChatGPT, an AI-powered chatbot that utilizes topic
modeling and reinforcement learning to generate natural responses. Although ChatGPT …

Federated unlearning for on-device recommendation

W Yuan, H Yin, F Wu, S Zhang, T He… - Proceedings of the …, 2023 - dl.acm.org
The increasing data privacy concerns in recommendation systems have made federated
recommendations attract more and more attention. Existing federated recommendation …

Fast federated machine unlearning with nonlinear functional theory

T Che, Y Zhou, Z Zhang, L Lyu, J Liu… - International …, 2023 - proceedings.mlr.press
Federated machine unlearning (FMU) aims to remove the influence of a specified subset of
training data upon request from a trained federated learning model. Despite achieving …

Machine unlearning: Solutions and challenges

J Xu, Z Wu, C Wang, X Jia - IEEE Transactions on Emerging …, 2024 - ieeexplore.ieee.org
Machine learning models may inadvertently memorize sensitive, unauthorized, or malicious
data, posing risks of privacy breaches, security vulnerabilities, and performance …

Certified minimax unlearning with generalization rates and deletion capacity

J Liu, J Lou, Z Qin, K Ren - Advances in Neural Information …, 2023 - proceedings.neurips.cc
We study the problem of $(\epsilon,\delta) $-certified machine unlearning for minimax
models. Most of the existing works focus on unlearning from standard statistical learning …

Prompt certified machine unlearning with randomized gradient smoothing and quantization

Z Zhang, Y Zhou, X Zhao, T Che… - Advances in Neural …, 2022 - proceedings.neurips.cc
The right to be forgotten calls for efficient machine unlearning techniques that make trained
machine learning models forget a cohort of data. The combination of training and unlearning …