Signal propagation in complex networks
Signal propagation in complex networks drives epidemics, is responsible for information
going viral, promotes trust and facilitates moral behavior in social groups, enables the …
going viral, promotes trust and facilitates moral behavior in social groups, enables the …
Graph neural networks for materials science and chemistry
Abstract Machine learning plays an increasingly important role in many areas of chemistry
and materials science, being used to predict materials properties, accelerate simulations …
and materials science, being used to predict materials properties, accelerate simulations …
CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling
Large-scale simulations with complex electron interactions remain one of the greatest
challenges for atomistic modelling. Although classical force fields often fail to describe the …
challenges for atomistic modelling. Although classical force fields often fail to describe the …
Vision gnn: An image is worth graph of nodes
Network architecture plays a key role in the deep learning-based computer vision system.
The widely-used convolutional neural network and transformer treat the image as a grid or …
The widely-used convolutional neural network and transformer treat the image as a grid or …
Deep learning with graph convolutional networks: An overview and latest applications in computational intelligence
Convolutional neural networks (CNNs) have received widespread attention due to their
powerful modeling capabilities and have been successfully applied in natural language …
powerful modeling capabilities and have been successfully applied in natural language …
On over-squashing in message passing neural networks: The impact of width, depth, and topology
Abstract Message Passing Neural Networks (MPNNs) are instances of Graph Neural
Networks that leverage the graph to send messages over the edges. This inductive bias …
Networks that leverage the graph to send messages over the edges. This inductive bias …
Dstagnn: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting
S Lan, Y Ma, W Huang, W Wang… - … on machine learning, 2022 - proceedings.mlr.press
As a typical problem in time series analysis, traffic flow prediction is one of the most
important application fields of machine learning. However, achieving highly accurate traffic …
important application fields of machine learning. However, achieving highly accurate traffic …
Large-scale multi-modal pre-trained models: A comprehensive survey
With the urgent demand for generalized deep models, many pre-trained big models are
proposed, such as bidirectional encoder representations (BERT), vision transformer (ViT) …
proposed, such as bidirectional encoder representations (BERT), vision transformer (ViT) …
Hivt: Hierarchical vector transformer for multi-agent motion prediction
Accurately predicting the future motions of surrounding traffic agents is critical for the safety
of autonomous vehicles. Recently, vectorized approaches have dominated the motion …
of autonomous vehicles. Recently, vectorized approaches have dominated the motion …
Finding global homophily in graph neural networks when meeting heterophily
We investigate graph neural networks on graphs with heterophily. Some existing methods
amplify a node's neighborhood with multi-hop neighbors to include more nodes with …
amplify a node's neighborhood with multi-hop neighbors to include more nodes with …