A survey on distributed machine learning

J Verbraeken, M Wolting, J Katzy… - Acm computing surveys …, 2020 - dl.acm.org
The demand for artificial intelligence has grown significantly over the past decade, and this
growth has been fueled by advances in machine learning techniques and the ability to …

Federated optimization in heterogeneous networks

T Li, AK Sahu, M Zaheer, M Sanjabi… - … of Machine learning …, 2020 - proceedings.mlsys.org
Federated Learning is a distributed learning paradigm with two key challenges that
differentiate it from traditional distributed optimization:(1) significant variability in terms of the …

On the convergence of fedavg on non-iid data

X Li, K Huang, W Yang, S Wang, Z Zhang - arxiv preprint arxiv …, 2019 - arxiv.org
Federated learning enables a large amount of edge computing devices to jointly learn a
model without data sharing. As a leading algorithm in this setting, Federated Averaging …

Federated optimization: Distributed machine learning for on-device intelligence

J Konečný, HB McMahan, D Ramage… - arxiv preprint arxiv …, 2016 - arxiv.org
We introduce a new and increasingly relevant setting for distributed optimization in machine
learning, where the data defining the optimization are unevenly distributed over an …

Federated optimization: Distributed optimization beyond the datacenter

J Konečný, B McMahan, D Ramage - arxiv preprint arxiv:1511.03575, 2015 - arxiv.org
We introduce a new and increasingly relevant setting for distributed optimization in machine
learning, where the data defining the optimization are distributed (unevenly) over an …

Scaling distributed machine learning with {In-Network} aggregation

A Sapio, M Canini, CY Ho, J Nelson, P Kalnis… - … USENIX Symposium on …, 2021 - usenix.org
Training machine learning models in parallel is an increasingly important workload. We
accelerate distributed parallel training by designing a communication primitive that uses a …

Fast-convergent federated learning

HT Nguyen, V Sehwag… - IEEE Journal on …, 2020 - ieeexplore.ieee.org
Federated learning has emerged recently as a promising solution for distributing machine
learning tasks through modern networks of mobile devices. Recent studies have obtained …

Gaia:{Geo-Distributed} machine learning approaching {LAN} speeds

K Hsieh, A Harlap, N Vijaykumar, D Konomis… - … USENIX Symposium on …, 2017 - usenix.org
Machine learning (ML) is widely used to derive useful information from large-scale data
(such as user activities, pictures, and videos) generated at increasingly rapid rates, all over …