Reinforcement learning for combinatorial optimization: A survey
Many traditional algorithms for solving combinatorial optimization problems involve using
hand-crafted heuristics that sequentially construct a solution. Such heuristics are designed …
hand-crafted heuristics that sequentially construct a solution. Such heuristics are designed …
End-to-end constrained optimization learning: A survey
This paper surveys the recent attempts at leveraging machine learning to solve constrained
optimization problems. It focuses on surveying the work on integrating combinatorial solvers …
optimization problems. It focuses on surveying the work on integrating combinatorial solvers …
Difusco: Graph-based diffusion solvers for combinatorial optimization
Abstract Neural network-based Combinatorial Optimization (CO) methods have shown
promising results in solving various NP-complete (NPC) problems without relying on hand …
promising results in solving various NP-complete (NPC) problems without relying on hand …
Combinatorial optimization and reasoning with graph neural networks
Combinatorial optimization is a well-established area in operations research and computer
science. Until recently, its methods have focused on solving problem instances in isolation …
science. Until recently, its methods have focused on solving problem instances in isolation …
Combinatorial optimization with physics-inspired graph neural networks
Combinatorial optimization problems are pervasive across science and industry. Modern
deep learning tools are poised to solve these problems at unprecedented scales, but a …
deep learning tools are poised to solve these problems at unprecedented scales, but a …
Towards omni-generalizable neural methods for vehicle routing problems
Learning heuristics for vehicle routing problems (VRPs) has gained much attention due to
the less reliance on hand-crafted rules. However, existing methods are typically trained and …
the less reliance on hand-crafted rules. However, existing methods are typically trained and …
Dimes: A differentiable meta solver for combinatorial optimization problems
Recently, deep reinforcement learning (DRL) models have shown promising results in
solving NP-hard Combinatorial Optimization (CO) problems. However, most DRL solvers …
solving NP-hard Combinatorial Optimization (CO) problems. However, most DRL solvers …
Deep policy dynamic programming for vehicle routing problems
Routing problems are a class of combinatorial problems with many practical applications.
Recently, end-to-end deep learning methods have been proposed to learn approximate …
Recently, end-to-end deep learning methods have been proposed to learn approximate …
Intelligent disassembly of electric-vehicle batteries: a forward-looking overview
Retired electric-vehicle lithium-ion battery (EV-LIB) packs pose severe environmental
hazards. Efficient recovery of these spent batteries is a significant way to achieve closed …
hazards. Efficient recovery of these spent batteries is a significant way to achieve closed …
Learning combinatorial optimization on graphs: A survey with applications to networking
Existing approaches to solving combinatorial optimization problems on graphs suffer from
the need to engineer each problem algorithmically, with practical problems recurring in …
the need to engineer each problem algorithmically, with practical problems recurring in …