Software testing with large language models: Survey, landscape, and vision

J Wang, Y Huang, C Chen, Z Liu… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Pre-trained large language models (LLMs) have recently emerged as a breakthrough
technology in natural language processing and artificial intelligence, with the ability to …

Bias mitigation for machine learning classifiers: A comprehensive survey

M Hort, Z Chen, JM Zhang, M Harman… - ACM Journal on …, 2024 - dl.acm.org
This article provides a comprehensive survey of bias mitigation methods for achieving
fairness in Machine Learning (ML) models. We collect a total of 341 publications concerning …

“Everyone wants to do the model work, not the data work”: Data Cascades in High-Stakes AI

N Sambasivan, S Kapania, H Highfill… - proceedings of the …, 2021 - dl.acm.org
AI models are increasingly applied in high-stakes domains like health and conservation.
Data quality carries an elevated significance in high-stakes AI due to its heightened …

[BOOK][B] Human-centered AI

B Shneiderman - 2022 - books.google.com
The remarkable progress in algorithms for machine and deep learning have opened the
doors to new opportunities, and some dark possibilities. However, a bright future awaits …

Bridging the gap between ethics and practice: guidelines for reliable, safe, and trustworthy human-centered AI systems

B Shneiderman - ACM Transactions on Interactive Intelligent Systems …, 2020 - dl.acm.org
This article attempts to bridge the gap between widely discussed ethical principles of Human-
centered AI (HCAI) and practical steps for effective governance. Since HCAI systems are …

Dawn of the transformer era in speech emotion recognition: closing the valence gap

J Wagner, A Triantafyllopoulos… - … on Pattern Analysis …, 2023 - ieeexplore.ieee.org
Recent advances in transformer-based architectures have shown promise in several
machine learning tasks. In the audio domain, such architectures have been successfully …

Trustworthy AI: From principles to practices

B Li, P Qi, B Liu, S Di, J Liu, J Pei, J Yi… - ACM Computing Surveys, 2023 - dl.acm.org
The rapid development of Artificial Intelligence (AI) technology has enabled the deployment
of various systems based on it. However, many current AI systems are found vulnerable to …

Software engineering for AI-based systems: a survey

S Martínez-Fernández, J Bogner, X Franch… - ACM Transactions on …, 2022 - dl.acm.org
AI-based systems are software systems with functionalities enabled by at least one AI
component (eg, for image-, speech-recognition, and autonomous driving). AI-based systems …

Unsupervised translation of programming languages

B Roziere, MA Lachaux… - Advances in neural …, 2020 - proceedings.neurips.cc
A transcompiler, also known as source-to-source translator, is a system that converts source
code from a high-level programming language (such as C++ or Python) to another …

Testing machine learning based systems: a systematic map**

V Riccio, G Jahangirova, A Stocco… - Empirical Software …, 2020 - Springer
Abstract Context: A Machine Learning based System (MLS) is a software system including
one or more components that learn how to perform a task from a given data set. The …