Artificial intelligence: A powerful paradigm for scientific research

Y Xu, X Liu, X Cao, C Huang, E Liu, S Qian, X Liu… - The Innovation, 2021 - cell.com
Artificial intelligence (AI) coupled with promising machine learning (ML) techniques well
known from computer science is broadly affecting many aspects of various fields including …

High-performance medicine: the convergence of human and artificial intelligence

EJ Topol - Nature medicine, 2019 - nature.com
The use of artificial intelligence, and the deep-learning subtype in particular, has been
enabled by the use of labeled big data, along with markedly enhanced computing power …

Spikingjelly: An open-source machine learning infrastructure platform for spike-based intelligence

W Fang, Y Chen, J Ding, Z Yu, T Masquelier… - Science …, 2023 - science.org
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic
chips with high energy efficiency by introducing neural dynamics and spike properties. As …

[BOOK][B] Neural networks and deep learning

CC Aggarwal - 2018 - Springer
“Any AI smart enough to pass a Turing test is smart enough to know to fail it.”–*** Ian
McDonald Neural networks were developed to simulate the human nervous system for …

[HTML][HTML] Continual lifelong learning with neural networks: A review

GI Parisi, R Kemker, JL Part, C Kanan, S Wermter - Neural networks, 2019 - Elsevier
Humans and animals have the ability to continually acquire, fine-tune, and transfer
knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is …

[HTML][HTML] An overview of deep learning in medical imaging focusing on MRI

AS Lundervold, A Lundervold - Zeitschrift für Medizinische Physik, 2019 - Elsevier
What has happened in machine learning lately, and what does it mean for the future of
medical image analysis? Machine learning has witnessed a tremendous amount of attention …

Catalyzing next-generation artificial intelligence through neuroai

A Zador, S Escola, B Richards, B Ölveczky… - Nature …, 2023 - nature.com
Neuroscience has long been an essential driver of progress in artificial intelligence (AI). We
propose that to accelerate progress in AI, we must invest in fundamental research in …

An introduction to deep reinforcement learning

V François-Lavet, P Henderson, R Islam… - … and Trends® in …, 2018 - nowpublishers.com
Deep reinforcement learning is the combination of reinforcement learning (RL) and deep
learning. This field of research has been able to solve a wide range of complex …

Opportunities and obstacles for deep learning in biology and medicine

T Ching, DS Himmelstein… - Journal of the …, 2018 - royalsocietypublishing.org
Deep learning describes a class of machine learning algorithms that are capable of
combining raw inputs into layers of intermediate features. These algorithms have recently …

[HTML][HTML] Embracing change: Continual learning in deep neural networks

R Hadsell, D Rao, AA Rusu, R Pascanu - Trends in cognitive sciences, 2020 - cell.com
Artificial intelligence research has seen enormous progress over the past few decades, but it
predominantly relies on fixed datasets and stationary environments. Continual learning is an …