Artificial intelligence: A powerful paradigm for scientific research
Artificial intelligence (AI) coupled with promising machine learning (ML) techniques well
known from computer science is broadly affecting many aspects of various fields including …
known from computer science is broadly affecting many aspects of various fields including …
High-performance medicine: the convergence of human and artificial intelligence
EJ Topol - Nature medicine, 2019 - nature.com
The use of artificial intelligence, and the deep-learning subtype in particular, has been
enabled by the use of labeled big data, along with markedly enhanced computing power …
enabled by the use of labeled big data, along with markedly enhanced computing power …
Spikingjelly: An open-source machine learning infrastructure platform for spike-based intelligence
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic
chips with high energy efficiency by introducing neural dynamics and spike properties. As …
chips with high energy efficiency by introducing neural dynamics and spike properties. As …
[BOOK][B] Neural networks and deep learning
CC Aggarwal - 2018 - Springer
“Any AI smart enough to pass a Turing test is smart enough to know to fail it.”–*** Ian
McDonald Neural networks were developed to simulate the human nervous system for …
McDonald Neural networks were developed to simulate the human nervous system for …
[HTML][HTML] Continual lifelong learning with neural networks: A review
Humans and animals have the ability to continually acquire, fine-tune, and transfer
knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is …
knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is …
[HTML][HTML] An overview of deep learning in medical imaging focusing on MRI
What has happened in machine learning lately, and what does it mean for the future of
medical image analysis? Machine learning has witnessed a tremendous amount of attention …
medical image analysis? Machine learning has witnessed a tremendous amount of attention …
Catalyzing next-generation artificial intelligence through neuroai
Neuroscience has long been an essential driver of progress in artificial intelligence (AI). We
propose that to accelerate progress in AI, we must invest in fundamental research in …
propose that to accelerate progress in AI, we must invest in fundamental research in …
An introduction to deep reinforcement learning
Deep reinforcement learning is the combination of reinforcement learning (RL) and deep
learning. This field of research has been able to solve a wide range of complex …
learning. This field of research has been able to solve a wide range of complex …
Opportunities and obstacles for deep learning in biology and medicine
T Ching, DS Himmelstein… - Journal of the …, 2018 - royalsocietypublishing.org
Deep learning describes a class of machine learning algorithms that are capable of
combining raw inputs into layers of intermediate features. These algorithms have recently …
combining raw inputs into layers of intermediate features. These algorithms have recently …
[HTML][HTML] Embracing change: Continual learning in deep neural networks
Artificial intelligence research has seen enormous progress over the past few decades, but it
predominantly relies on fixed datasets and stationary environments. Continual learning is an …
predominantly relies on fixed datasets and stationary environments. Continual learning is an …