When machine learning meets privacy: A survey and outlook

B Liu, M Ding, S Shaham, W Rahayu… - ACM Computing …, 2021 - dl.acm.org
The newly emerged machine learning (eg, deep learning) methods have become a strong
driving force to revolutionize a wide range of industries, such as smart healthcare, financial …

The power of generative ai: A review of requirements, models, input–output formats, evaluation metrics, and challenges

A Bandi, PVSR Adapa, YEVPK Kuchi - Future Internet, 2023 - mdpi.com
Generative artificial intelligence (AI) has emerged as a powerful technology with numerous
applications in various domains. There is a need to identify the requirements and evaluation …

Deep neural networks and tabular data: A survey

V Borisov, T Leemann, K Seßler, J Haug… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Heterogeneous tabular data are the most commonly used form of data and are essential for
numerous critical and computationally demanding applications. On homogeneous datasets …

AutoML: A survey of the state-of-the-art

X He, K Zhao, X Chu - Knowledge-based systems, 2021 - Elsevier
Deep learning (DL) techniques have obtained remarkable achievements on various tasks,
such as image recognition, object detection, and language modeling. However, building a …

Survey on synthetic data generation, evaluation methods and GANs

A Figueira, B Vaz - Mathematics, 2022 - mdpi.com
Synthetic data consists of artificially generated data. When data are scarce, or of poor
quality, synthetic data can be used, for example, to improve the performance of machine …

Synthetic Data--what, why and how?

J Jordon, L Szpruch, F Houssiau, M Bottarelli… - arxiv preprint arxiv …, 2022 - arxiv.org
This explainer document aims to provide an overview of the current state of the rapidly
expanding work on synthetic data technologies, with a particular focus on privacy. The …

Imbalanced data classification: A KNN and generative adversarial networks-based hybrid approach for intrusion detection

H Ding, L Chen, L Dong, Z Fu, X Cui - Future Generation Computer Systems, 2022 - Elsevier
With the continuous emergence of various network attacks, it is becoming more and more
important to ensure the security of the network. Intrusion detection, as one of the important …

A survey on data collection for machine learning: a big data-ai integration perspective

Y Roh, G Heo, SE Whang - IEEE Transactions on Knowledge …, 2019 - ieeexplore.ieee.org
Data collection is a major bottleneck in machine learning and an active research topic in
multiple communities. There are largely two reasons data collection has recently become a …

AI-guided auto-discovery of low-carbon cost-effective ultra-high performance concrete (UHPC)

S Mahjoubi, R Barhemat, W Meng, Y Bao - Resources, Conservation and …, 2023 - Elsevier
This paper presents an AI-guided approach to automatically discover low-carbon cost-
effective ultra-high performance concrete (UHPC). The presented approach automates data …

Conditional Wasserstein GAN-based oversampling of tabular data for imbalanced learning

J Engelmann, S Lessmann - Expert Systems with Applications, 2021 - Elsevier
Class imbalance impedes the predictive performance of classification models. Popular
countermeasures include oversampling minority class cases by creating synthetic examples …