Ultra reliable, low latency vehicle-to-infrastructure wireless communications with edge computing

MMK Tareq, O Semiari, MA Salehi… - 2018 IEEE Global …, 2018 - ieeexplore.ieee.org
Ultra reliable, low latency vehicle-to-infrastructure (V2I) communications is a key
requirement for seamless operation of autonomous vehicles (AVs) in future smart cities. To …

Network motifs: a survey

D Jain, R Patgiri - Advances in Computing and Data Sciences: Third …, 2019 - Springer
Network motifs are the building blocks of complex networks. Studying these frequently
occurring patterns disclose a lot of information about these networks. The applications of …

DOSP: Data Dissemination with optimized and secured path for ad-hoc vehicular communication networks

KN Tripathi, AM Yadav… - 2020 IEEE 17th …, 2020 - ieeexplore.ieee.org
Timely delivery of critical information and data may reduce the chances of road accidents
using vehicular adhoc networks. The vehicular ad-hoc network uses the multihop data …

MEGA: Explaining Graph Neural Networks with Network Motifs

F Ding, N Luo, S Yu, T Wang… - 2023 International Joint …, 2023 - ieeexplore.ieee.org
Graph Neural Networks (GNNs) are powerful tools for graph representation. However, GNNs
have remained black boxes, leading to the lack of explainability. As a consequence, the …

Exploring spatial motifs for device-to-device network analysis (DNA) in 5G networks

T Zeng, O Semiari, W Saad - 2017 51st Asilomar Conference …, 2017 - ieeexplore.ieee.org
Device-to-device (D2D) communication is a promising approach to efficiently disseminate
critical or viral information across 5G cellular networks. Rea** the benefits of D2D …

Spatio-temporal modeling for large-scale vehicular networks using graph convolutional networks

J Liu, Y **ao, Y Li, G Shi, W Saad… - ICC 2021-IEEE …, 2021 - ieeexplore.ieee.org
The effective deployment of connected vehicular networks is contingent upon maintaining a
desired performance across spatial and temporal domains. In this paper, a graph-based …

The indicator R′ of the statistical significance for subgraph for motif discovery task

MN Yudina, AV Gam - Journal of Physics: Conference Series, 2021 - iopscience.iop.org
The analysis of the statistical significance of subgraphs is carried out in dealing with solving
the problem of detecting network motif in graphs of large networks. A new generalizing …

Показатель статистической значимости подграфов R'в задаче выявления сетевых мотивов

МН Юдина - Системы управления, информационные технологии …, 2020 - elibrary.ru
Выполняется анализ показателей статистической значимости подграфов при решении
задачи выявления сетевых мотивов в графах больших сетей. Предлагается новый …

[PDF][PDF] МЕТОДЫ И АЛГОРИТМЫ УСКОРЕННОГО РАСЧЕТА ЧАСТОТ ВСТРЕЧАЕМОСТИ СЕТЕВЫХ МОТИВОВ В БОЛЬШИХ СЛУЧАЙНЫХ ГРАФАХ

Актуальность темы исследования. Исследованию больших сетей в последние два
десятилетия уделяется пристальное внимание. Одной из таких больших сетей …