Interpreting black-box models: a review on explainable artificial intelligence

V Hassija, V Chamola, A Mahapatra, A Singal… - Cognitive …, 2024 - Springer
Recent years have seen a tremendous growth in Artificial Intelligence (AI)-based
methodological development in a broad range of domains. In this rapidly evolving field …

From anecdotal evidence to quantitative evaluation methods: A systematic review on evaluating explainable ai

M Nauta, J Trienes, S Pathak, E Nguyen… - ACM Computing …, 2023 - dl.acm.org
The rising popularity of explainable artificial intelligence (XAI) to understand high-performing
black boxes raised the question of how to evaluate explanations of machine learning (ML) …

[HTML][HTML] Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence

S Ali, T Abuhmed, S El-Sappagh, K Muhammad… - Information fusion, 2023 - Elsevier
Artificial intelligence (AI) is currently being utilized in a wide range of sophisticated
applications, but the outcomes of many AI models are challenging to comprehend and trust …

[HTML][HTML] Explainable Artificial Intelligence (XAI) 2.0: A manifesto of open challenges and interdisciplinary research directions

L Longo, M Brcic, F Cabitza, J Choi, R Confalonieri… - Information …, 2024 - Elsevier
Understanding black box models has become paramount as systems based on opaque
Artificial Intelligence (AI) continue to flourish in diverse real-world applications. In response …

A survey of explainable artificial intelligence for smart cities

AR Javed, W Ahmed, S Pandya, PKR Maddikunta… - Electronics, 2023 - mdpi.com
The emergence of Explainable Artificial Intelligence (XAI) has enhanced the lives of humans
and envisioned the concept of smart cities using informed actions, enhanced user …

Explainable AI for healthcare 5.0: opportunities and challenges

D Saraswat, P Bhattacharya, A Verma, VK Prasad… - IEEE …, 2022 - ieeexplore.ieee.org
In the healthcare domain, a transformative shift is envisioned towards Healthcare 5.0. It
expands the operational boundaries of Healthcare 4.0 and leverages patient-centric digital …

Explainable artificial intelligence for autonomous driving: A comprehensive overview and field guide for future research directions

S Atakishiyev, M Salameh, H Yao, R Goebel - IEEE Access, 2024 - ieeexplore.ieee.org
Autonomous driving has achieved significant milestones in research and development over
the last two decades. There is increasing interest in the field as the deployment of …

Expanding explainability: Towards social transparency in ai systems

U Ehsan, QV Liao, M Muller, MO Riedl… - Proceedings of the 2021 …, 2021 - dl.acm.org
As AI-powered systems increasingly mediate consequential decision-making, their
explainability is critical for end-users to take informed and accountable actions. Explanations …

Explainable artificial intelligence in cybersecurity: A survey

N Capuano, G Fenza, V Loia, C Stanzione - Ieee Access, 2022 - ieeexplore.ieee.org
Nowadays, Artificial Intelligence (AI) is widely applied in every area of human being's daily
life. Despite the AI benefits, its application suffers from the opacity of complex internal …

Ai alignment: A comprehensive survey

J Ji, T Qiu, B Chen, B Zhang, H Lou, K Wang… - arxiv preprint arxiv …, 2023 - arxiv.org
AI alignment aims to make AI systems behave in line with human intentions and values. As
AI systems grow more capable, the potential large-scale risks associated with misaligned AI …