Bias mitigation for machine learning classifiers: A comprehensive survey

M Hort, Z Chen, JM Zhang, M Harman… - ACM Journal on …, 2024 - dl.acm.org
This article provides a comprehensive survey of bias mitigation methods for achieving
fairness in Machine Learning (ML) models. We collect a total of 341 publications concerning …

AI fairness in data management and analytics: A review on challenges, methodologies and applications

P Chen, L Wu, L Wang - Applied sciences, 2023 - mdpi.com
This article provides a comprehensive overview of the fairness issues in artificial intelligence
(AI) systems, delving into its background, definition, and development process. The article …

The evolution of distributed systems for graph neural networks and their origin in graph processing and deep learning: A survey

J Vatter, R Mayer, HA Jacobsen - ACM Computing Surveys, 2023 - dl.acm.org
Graph neural networks (GNNs) are an emerging research field. This specialized deep
neural network architecture is capable of processing graph structured data and bridges the …

Trustworthy ai: A computational perspective

H Liu, Y Wang, W Fan, X Liu, Y Li, S Jain, Y Liu… - ACM Transactions on …, 2022 - dl.acm.org
In the past few decades, artificial intelligence (AI) technology has experienced swift
developments, changing everyone's daily life and profoundly altering the course of human …

Trustworthy AI: From principles to practices

B Li, P Qi, B Liu, S Di, J Liu, J Pei, J Yi… - ACM Computing Surveys, 2023 - dl.acm.org
The rapid development of Artificial Intelligence (AI) technology has enabled the deployment
of various systems based on it. However, many current AI systems are found vulnerable to …

Unmasking bias in artificial intelligence: a systematic review of bias detection and mitigation strategies in electronic health record-based models

F Chen, L Wang, J Hong, J Jiang… - Journal of the American …, 2024 - academic.oup.com
Objectives Leveraging artificial intelligence (AI) in conjunction with electronic health records
(EHRs) holds transformative potential to improve healthcare. However, addressing bias in …

MAAT: a novel ensemble approach to addressing fairness and performance bugs for machine learning software

Z Chen, JM Zhang, F Sarro, M Harman - … of the 30th ACM joint european …, 2022 - dl.acm.org
Machine Learning (ML) software can lead to unfair and unethical decisions, making software
fairness bugs an increasingly significant concern for software engineers. However …

Improving recommendation fairness via data augmentation

L Chen, L Wu, K Zhang, R Hong, D Lian… - Proceedings of the …, 2023 - dl.acm.org
Collaborative filtering based recommendation learns users' preferences from all users'
historical behavior data, and has been popular to facilitate decision making. Recently, the …

Trustworthy artificial intelligence in Alzheimer's disease: state of the art, opportunities, and challenges

S El-Sappagh, JM Alonso-Moral, T Abuhmed… - Artificial Intelligence …, 2023 - Springer
Abstract Medical applications of Artificial Intelligence (AI) have consistently shown
remarkable performance in providing medical professionals and patients with support for …

Fairness issues, current approaches, and challenges in machine learning models

TD Jui, P Rivas - International Journal of Machine Learning and …, 2024 - Springer
With the increasing influence of machine learning algorithms in decision-making processes,
concerns about fairness have gained significant attention. This area now offers significant …