[HTML][HTML] Deep residual learning for image recognition: A survey

M Shafiq, Z Gu - Applied sciences, 2022 - mdpi.com
Deep Residual Networks have recently been shown to significantly improve the
performance of neural networks trained on ImageNet, with results beating all previous …

Image super-resolution: A comprehensive review, recent trends, challenges and applications

DC Lepcha, B Goyal, A Dogra, V Goyal - Information Fusion, 2023 - Elsevier
Super resolution (SR) is an eminent system in the field of computer vison and image
processing to improve the visual perception of the poor-quality images. The key objective of …

Srformer: Permuted self-attention for single image super-resolution

Y Zhou, Z Li, CL Guo, S Bai… - Proceedings of the …, 2023 - openaccess.thecvf.com
Previous works have shown that increasing the window size for Transformer-based image
super-resolution models (eg, SwinIR) can significantly improve the model performance but …

Activating more pixels in image super-resolution transformer

X Chen, X Wang, J Zhou, Y Qiao… - Proceedings of the …, 2023 - openaccess.thecvf.com
Transformer-based methods have shown impressive performance in low-level vision tasks,
such as image super-resolution. However, we find that these networks can only utilize a …

Efficient long-range attention network for image super-resolution

X Zhang, H Zeng, S Guo, L Zhang - European conference on computer …, 2022 - Springer
Recently, transformer-based methods have demonstrated impressive results in various
vision tasks, including image super-resolution (SR), by exploiting the self-attention (SA) for …

Omni aggregation networks for lightweight image super-resolution

H Wang, X Chen, B Ni, Y Liu… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
While lightweight ViT framework has made tremendous progress in image super-resolution,
its uni-dimensional self-attention modeling, as well as homogeneous aggregation scheme …

Learning enriched features for fast image restoration and enhancement

SW Zamir, A Arora, S Khan, M Hayat… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Given a degraded input image, image restoration aims to recover the missing high-quality
image content. Numerous applications demand effective image restoration, eg …

Spatially-adaptive feature modulation for efficient image super-resolution

L Sun, J Dong, J Tang, J Pan - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Although deep learning-based solutions have achieved impressive reconstruction
performance in image super-resolution (SR), these models are generally large, with …

A comprehensive review on deep learning based remote sensing image super-resolution methods

P Wang, B Bayram, E Sertel - Earth-Science Reviews, 2022 - Elsevier
Satellite imageries are an important geoinformation source for different applications in the
Earth Science field. However, due to the limitation of the optic and sensor technologies and …

Residual local feature network for efficient super-resolution

F Kong, M Li, S Liu, D Liu, J He… - Proceedings of the …, 2022 - openaccess.thecvf.com
Deep learning based approaches has achieved great performance in single image super-
resolution (SISR). However, recent advances in efficient super-resolution focus on reducing …