Challenges and applications of large language models

J Kaddour, J Harris, M Mozes, H Bradley… - arxiv preprint arxiv …, 2023 - arxiv.org
Large Language Models (LLMs) went from non-existent to ubiquitous in the machine
learning discourse within a few years. Due to the fast pace of the field, it is difficult to identify …

Cyber-security and reinforcement learning—a brief survey

AMK Adawadkar, N Kulkarni - Engineering Applications of Artificial …, 2022 - Elsevier
This paper presents a comprehensive literature review on Reinforcement Learning (RL)
techniques used in Intrusion Detection Systems (IDS), Intrusion Prevention Systems (IPS) …

Large language models are human-level prompt engineers

Y Zhou, AI Muresanu, Z Han, K Paster, S Pitis… - arxiv preprint arxiv …, 2022 - arxiv.org
By conditioning on natural language instructions, large language models (LLMs) have
displayed impressive capabilities as general-purpose computers. However, task …

Guiding pretraining in reinforcement learning with large language models

Y Du, O Watkins, Z Wang, C Colas… - International …, 2023 - proceedings.mlr.press
Reinforcement learning algorithms typically struggle in the absence of a dense, well-shaped
reward function. Intrinsically motivated exploration methods address this limitation by …

Foundational challenges in assuring alignment and safety of large language models

U Anwar, A Saparov, J Rando, D Paleka… - arxiv preprint arxiv …, 2024 - arxiv.org
This work identifies 18 foundational challenges in assuring the alignment and safety of large
language models (LLMs). These challenges are organized into three different categories …

Eureka: Human-level reward design via coding large language models

YJ Ma, W Liang, G Wang, DA Huang, O Bastani… - arxiv preprint arxiv …, 2023 - arxiv.org
Large Language Models (LLMs) have excelled as high-level semantic planners for
sequential decision-making tasks. However, harnessing them to learn complex low-level …

Multi-game decision transformers

KH Lee, O Nachum, MS Yang, L Lee… - Advances in …, 2022 - proceedings.neurips.cc
A longstanding goal of the field of AI is a method for learning a highly capable, generalist
agent from diverse experience. In the subfields of vision and language, this was largely …

Bigger, better, faster: Human-level atari with human-level efficiency

M Schwarzer, JSO Ceron, A Courville… - International …, 2023 - proceedings.mlr.press
We introduce a value-based RL agent, which we call BBF, that achieves super-human
performance in the Atari 100K benchmark. BBF relies on scaling the neural networks used …

The primacy bias in deep reinforcement learning

E Nikishin, M Schwarzer, P D'Oro… - International …, 2022 - proceedings.mlr.press
This work identifies a common flaw of deep reinforcement learning (RL) algorithms: a
tendency to rely on early interactions and ignore useful evidence encountered later …

Masked visual pre-training for motor control

T **ao, I Radosavovic, T Darrell, J Malik - arxiv preprint arxiv:2203.06173, 2022 - arxiv.org
This paper shows that self-supervised visual pre-training from real-world images is effective
for learning motor control tasks from pixels. We first train the visual representations by …