Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Domain generalization: A survey
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet
challenging for machines to reproduce. This is because most learning algorithms strongly …
challenging for machines to reproduce. This is because most learning algorithms strongly …
Diffusion Models for Image Restoration and Enhancement--A Comprehensive Survey
Image restoration (IR) has been an indispensable and challenging task in the low-level
vision field, which strives to improve the subjective quality of images distorted by various …
vision field, which strives to improve the subjective quality of images distorted by various …
Single-source domain expansion network for cross-scene hyperspectral image classification
Currently, cross-scene hyperspectral image (HSI) classification has drawn increasing
attention. It is necessary to train a model only on source domain (SD) and directly …
attention. It is necessary to train a model only on source domain (SD) and directly …
A fourier-based framework for domain generalization
Modern deep neural networks suffer from performance degradation when evaluated on
testing data under different distributions from training data. Domain generalization aims at …
testing data under different distributions from training data. Domain generalization aims at …
Federated domain generalization with generalization adjustment
Abstract Federated Domain Generalization (FedDG) attempts to learn a global model in a
privacy-preserving manner that generalizes well to new clients possibly with domain shift …
privacy-preserving manner that generalizes well to new clients possibly with domain shift …
Generalizing to unseen domains: A survey on domain generalization
Machine learning systems generally assume that the training and testing distributions are
the same. To this end, a key requirement is to develop models that can generalize to unseen …
the same. To this end, a key requirement is to develop models that can generalize to unseen …
Causality inspired representation learning for domain generalization
Abstract Domain generalization (DG) is essentially an out-of-distribution problem, aiming to
generalize the knowledge learned from multiple source domains to an unseen target …
generalize the knowledge learned from multiple source domains to an unseen target …
In search of lost domain generalization
The goal of domain generalization algorithms is to predict well on distributions different from
those seen during training. While a myriad of domain generalization algorithms exist …
those seen during training. While a myriad of domain generalization algorithms exist …
Deep stable learning for out-of-distribution generalization
Approaches based on deep neural networks have achieved striking performance when
testing data and training data share similar distribution, but can significantly fail otherwise …
testing data and training data share similar distribution, but can significantly fail otherwise …
A fine-grained analysis on distribution shift
Robustness to distribution shifts is critical for deploying machine learning models in the real
world. Despite this necessity, there has been little work in defining the underlying …
world. Despite this necessity, there has been little work in defining the underlying …