Distinguishing cause from effect using observational data: methods and benchmarks

JM Mooij, J Peters, D Janzing, J Zscheischler… - Journal of Machine …, 2016 - jmlr.org
The discovery of causal relationships from purely observational data is a fundamental
problem in science. The most elementary form of such a causal discovery problem is to …

JIDT: An information-theoretic toolkit for studying the dynamics of complex systems

JT Lizier - Frontiers in Robotics and AI, 2014 - frontiersin.org
Complex systems are increasingly being viewed as distributed information processing
systems, particularly in the domains of computational neuroscience, bioinformatics, and …

Exploratory landscape analysis of continuous space optimization problems using information content

MA Muñoz, M Kirley… - IEEE transactions on …, 2014 - ieeexplore.ieee.org
Data-driven analysis methods, such as the information content of a fitness sequence,
characterize a discrete fitness landscape by quantifying its smoothness, ruggedness, or …

Nonparametric von mises estimators for entropies, divergences and mutual informations

K Kandasamy, A Krishnamurthy… - Advances in …, 2015 - proceedings.neurips.cc
We propose and analyse estimators for statistical functionals of one or moredistributions
under nonparametric assumptions. Our estimators are derived from the von Mises …

Variational Bayesian experimental design for geophysical applications: seismic source location, amplitude versus offset inversion, and estimating CO2 saturations in …

D Strutz, A Curtis - Geophysical Journal International, 2024 - academic.oup.com
In geophysical surveys or experiments, recorded data are used to constrain properties of the
planetary subsurface, oceans, atmosphere or cryosphere. How the experimental data are …

[HTML][HTML] A novel rolling bearing fault diagnosis and severity analysis method

Y Chen, T Zhang, Z Luo, K Sun - Applied Sciences, 2019 - mdpi.com
To improve the fault identification accuracy of rolling bearing and effectively analyze the fault
severity, a novel rolling bearing fault diagnosis and severity analysis method based on the …

Forecastable component analysis

G Goerg - International conference on machine learning, 2013 - proceedings.mlr.press
Abstract I introduce Forecastable Component Analysis (ForeCA), a novel dimension
reduction technique for temporally dependent signals. Based on a new forecastability …

[HTML][HTML] Geometric k-nearest neighbor estimation of entropy and mutual information

WM Lord, J Sun, EM Bollt - Chaos: An Interdisciplinary Journal of …, 2018 - pubs.aip.org
Nonparametric estimation of mutual information is used in a wide range of scientific
problems to quantify dependence between variables. The k-nearest neighbor (knn) methods …

Estimating Information Theoretic Measures via Multidimensional Gaussianization

V Laparra, JE Johnson, G Camps-Valls… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Information theory is an outstanding framework for measuring uncertainty, dependence, and
relevance in data and systems. It has several desirable properties for real-world …

Энтропийное моделирование многомерных стохастических систем

АН Тырсин - 2016 - elibrary.ru
Джон фон Нейман. Предисловие к книге: Мартин Н., Ингленд Дж. Математическая
теория энтропии.–М.: Мир, 1988, с. 18. Роль математического моделирования в …