Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Reinforcement learning algorithms: A brief survey
Reinforcement Learning (RL) is a machine learning (ML) technique to learn sequential
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …
Deep reinforcement learning at the edge of the statistical precipice
Deep reinforcement learning (RL) algorithms are predominantly evaluated by comparing
their relative performance on a large suite of tasks. Most published results on deep RL …
their relative performance on a large suite of tasks. Most published results on deep RL …
Unidexgrasp++: Improving dexterous gras** policy learning via geometry-aware curriculum and iterative generalist-specialist learning
We propose a novel, object-agnostic method for learning a universal policy for dexterous
object gras** from realistic point cloud observations and proprioceptive information under …
object gras** from realistic point cloud observations and proprioceptive information under …
Mastering visual continuous control: Improved data-augmented reinforcement learning
We present DrQ-v2, a model-free reinforcement learning (RL) algorithm for visual
continuous control. DrQ-v2 builds on DrQ, an off-policy actor-critic approach that uses data …
continuous control. DrQ-v2 builds on DrQ, an off-policy actor-critic approach that uses data …
Masked visual pre-training for motor control
This paper shows that self-supervised visual pre-training from real-world images is effective
for learning motor control tasks from pixels. We first train the visual representations by …
for learning motor control tasks from pixels. We first train the visual representations by …
Masked world models for visual control
Visual model-based reinforcement learning (RL) has the potential to enable sample-efficient
robot learning from visual observations. Yet the current approaches typically train a single …
robot learning from visual observations. Yet the current approaches typically train a single …
Contrastive learning as goal-conditioned reinforcement learning
In reinforcement learning (RL), it is easier to solve a task if given a good representation.
While deep RL should automatically acquire such good representations, prior work often …
While deep RL should automatically acquire such good representations, prior work often …
Mastering atari games with limited data
Reinforcement learning has achieved great success in many applications. However, sample
efficiency remains a key challenge, with prominent methods requiring millions (or even …
efficiency remains a key challenge, with prominent methods requiring millions (or even …