Deep learning modelling techniques: current progress, applications, advantages, and challenges

SF Ahmed, MSB Alam, M Hassan, MR Rozbu… - Artificial Intelligence …, 2023 - Springer
Deep learning (DL) is revolutionizing evidence-based decision-making techniques that can
be applied across various sectors. Specifically, it possesses the ability to utilize two or more …

Recent advancements in end-to-end autonomous driving using deep learning: A survey

PS Chib, P Singh - IEEE Transactions on Intelligent Vehicles, 2023 - ieeexplore.ieee.org
End-to-End driving is a promising paradigm as it circumvents the drawbacks associated with
modular systems, such as their overwhelming complexity and propensity for error …

MIC: Masked image consistency for context-enhanced domain adaptation

L Hoyer, D Dai, H Wang… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
In unsupervised domain adaptation (UDA), a model trained on source data (eg synthetic) is
adapted to target data (eg real-world) without access to target annotation. Most previous …

V2v4real: A real-world large-scale dataset for vehicle-to-vehicle cooperative perception

R Xu, X **a, J Li, H Li, S Zhang, Z Tu… - Proceedings of the …, 2023 - openaccess.thecvf.com
Modern perception systems of autonomous vehicles are known to be sensitive to occlusions
and lack the capability of long perceiving range. It has been one of the key bottlenecks that …

Robust test-time adaptation in dynamic scenarios

L Yuan, B **e, S Li - … of the IEEE/CVF Conference on …, 2023 - openaccess.thecvf.com
Test-time adaptation (TTA) intends to adapt the pretrained model to test distributions with
only unlabeled test data streams. Most of the previous TTA methods have achieved great …

Contrastive test-time adaptation

D Chen, D Wang, T Darrell… - Proceedings of the …, 2022 - openaccess.thecvf.com
Test-time adaptation is a special setting of unsupervised domain adaptation where a trained
model on the source domain has to adapt to the target domain without accessing source …

Image-adaptive YOLO for object detection in adverse weather conditions

W Liu, G Ren, R Yu, S Guo, J Zhu… - Proceedings of the AAAI …, 2022 - ojs.aaai.org
Though deep learning-based object detection methods have achieved promising results on
the conventional datasets, it is still challenging to locate objects from the low-quality images …

[PDF][PDF] Deep unsupervised domain adaptation: A review of recent advances and perspectives

X Liu, C Yoo, F **ng, H Oh, G El Fakhri… - … on Signal and …, 2022 - nowpublishers.com
Deep learning has become the method of choice to tackle real-world problems in different
domains, partly because of its ability to learn from data and achieve impressive performance …

Battle of the backbones: A large-scale comparison of pretrained models across computer vision tasks

M Goldblum, H Souri, R Ni, M Shu… - Advances in …, 2023 - proceedings.neurips.cc
Neural network based computer vision systems are typically built on a backbone, a
pretrained or randomly initialized feature extractor. Several years ago, the default option was …

Contrastive learning for compact single image dehazing

H Wu, Y Qu, S Lin, J Zhou, R Qiao… - Proceedings of the …, 2021 - openaccess.thecvf.com
Single image dehazing is a challenging ill-posed problem due to the severe information
degeneration. However, existing deep learning based dehazing methods only adopt clear …