Dynamic mode decomposition and its variants
PJ Schmid - Annual Review of Fluid Mechanics, 2022 - annualreviews.org
Dynamic mode decomposition (DMD) is a factorization and dimensionality reduction
technique for data sequences. In its most common form, it processes high-dimensional …
technique for data sequences. In its most common form, it processes high-dimensional …
Modern Koopman theory for dynamical systems
The field of dynamical systems is being transformed by the mathematical tools and
algorithms emerging from modern computing and data science. First-principles derivations …
algorithms emerging from modern computing and data science. First-principles derivations …
[BOOK][B] Data-driven science and engineering: Machine learning, dynamical systems, and control
SL Brunton, JN Kutz - 2022 - books.google.com
Data-driven discovery is revolutionizing how we model, predict, and control complex
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …
Modal analysis of fluid flows: An overview
SIMPLE aerodynamic configurations under even modest conditions can exhibit complex
flows with a wide range of temporal and spatial features. It has become common practice in …
flows with a wide range of temporal and spatial features. It has become common practice in …
Combustion machine learning: Principles, progress and prospects
Progress in combustion science and engineering has led to the generation of large amounts
of data from large-scale simulations, high-resolution experiments, and sensors. This corpus …
of data from large-scale simulations, high-resolution experiments, and sensors. This corpus …
Deep learning for universal linear embeddings of nonlinear dynamics
Identifying coordinate transformations that make strongly nonlinear dynamics approximately
linear has the potential to enable nonlinear prediction, estimation, and control using linear …
linear has the potential to enable nonlinear prediction, estimation, and control using linear …
Hidden physics models: Machine learning of nonlinear partial differential equations
M Raissi, GE Karniadakis - Journal of Computational Physics, 2018 - Elsevier
While there is currently a lot of enthusiasm about “big data”, useful data is usually “small”
and expensive to acquire. In this paper, we present a new paradigm of learning partial …
and expensive to acquire. In this paper, we present a new paradigm of learning partial …
Data-driven discovery of partial differential equations
We propose a sparse regression method capable of discovering the governing partial
differential equation (s) of a given system by time series measurements in the spatial …
differential equation (s) of a given system by time series measurements in the spatial …
Deep hidden physics models: Deep learning of nonlinear partial differential equations
M Raissi - Journal of Machine Learning Research, 2018 - jmlr.org
We put forth a deep learning approach for discovering nonlinear partial differential
equations from scattered and potentially noisy observations in space and time. Specifically …
equations from scattered and potentially noisy observations in space and time. Specifically …
Data-driven discovery of coordinates and governing equations
The discovery of governing equations from scientific data has the potential to transform data-
rich fields that lack well-characterized quantitative descriptions. Advances in sparse …
rich fields that lack well-characterized quantitative descriptions. Advances in sparse …