Current and emerging trends in medical image segmentation with deep learning

PH Conze, G Andrade-Miranda… - … on Radiation and …, 2023 - ieeexplore.ieee.org
In recent years, the segmentation of anatomical or pathological structures using deep
learning has experienced a widespread interest in medical image analysis. Remarkably …

Ultrasound medical imaging techniques: a survey

D Avola, L Cinque, A Fagioli, G Foresti… - ACM Computing Surveys …, 2021 - dl.acm.org
Ultrasound (US) imaging for medical purposes has been increasing in popularity over the
years. The US technology has some valuable strengths, such as it is harmless, very cheap …

U-net transformer: Self and cross attention for medical image segmentation

O Petit, N Thome, C Rambour, L Themyr… - Machine Learning in …, 2021 - Springer
Medical image segmentation remains particularly challenging for complex and low-contrast
anatomical structures. In this paper, we introduce the U-Transformer network, which …

A comprehensive study on colorectal polyp segmentation with ResUNet++, conditional random field and test-time augmentation

D Jha, PH Smedsrud, D Johansen… - IEEE journal of …, 2021 - ieeexplore.ieee.org
Colonoscopy is considered the gold standard for detection of colorectal cancer and its
precursors. Existing examination methods are, however, hampered by high overall miss …

Multi-scale self-guided attention for medical image segmentation

A Sinha, J Dolz - IEEE journal of biomedical and health …, 2020 - ieeexplore.ieee.org
Even though convolutional neural networks (CNNs) are driving progress in medical image
segmentation, standard models still have some drawbacks. First, the use of multi-scale …

CA-Net: Comprehensive attention convolutional neural networks for explainable medical image segmentation

R Gu, G Wang, T Song, R Huang… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
Accurate medical image segmentation is essential for diagnosis and treatment planning of
diseases. Convolutional Neural Networks (CNNs) have achieved state-of-the-art …

CHAOS challenge-combined (CT-MR) healthy abdominal organ segmentation

AE Kavur, NS Gezer, M Barış, S Aslan, PH Conze… - Medical Image …, 2021 - Elsevier
Segmentation of abdominal organs has been a comprehensive, yet unresolved, research
field for many years. In the last decade, intensive developments in deep learning (DL) …

Learning calibrated medical image segmentation via multi-rater agreement modeling

W Ji, S Yu, J Wu, K Ma, C Bian, Q Bi… - Proceedings of the …, 2021 - openaccess.thecvf.com
In medical image analysis, it is typical to collect multiple annotations, each from a different
clinical expert or rater, in the expectation that possible diagnostic errors could be mitigated …

Global guidance network for breast lesion segmentation in ultrasound images

C Xue, L Zhu, H Fu, X Hu, X Li, H Zhang… - Medical image analysis, 2021 - Elsevier
Automatic breast lesion segmentation in ultrasound helps to diagnose breast cancer, which
is one of the dreadful diseases that affect women globally. Segmenting breast regions …

Vivim: a video vision mamba for medical video object segmentation

Y Yang, Z **ng, L Zhu - arxiv preprint arxiv:2401.14168, 2024 - arxiv.org
Traditional convolutional neural networks have a limited receptive field while transformer-
based networks are mediocre in constructing long-term dependency from the perspective of …