Graph neural networks for materials science and chemistry
Abstract Machine learning plays an increasingly important role in many areas of chemistry
and materials science, being used to predict materials properties, accelerate simulations …
and materials science, being used to predict materials properties, accelerate simulations …
Geometric deep learning on molecular representations
Geometric deep learning (GDL) is based on neural network architectures that incorporate
and process symmetry information. GDL bears promise for molecular modelling applications …
and process symmetry information. GDL bears promise for molecular modelling applications …
Illuminating protein space with a programmable generative model
Three billion years of evolution has produced a tremendous diversity of protein molecules,
but the full potential of proteins is likely to be much greater. Accessing this potential has …
but the full potential of proteins is likely to be much greater. Accessing this potential has …
MACE: Higher order equivariant message passing neural networks for fast and accurate force fields
Creating fast and accurate force fields is a long-standing challenge in computational
chemistry and materials science. Recently, Equivariant Message Passing Neural Networks …
chemistry and materials science. Recently, Equivariant Message Passing Neural Networks …
Equibind: Geometric deep learning for drug binding structure prediction
Predicting how a drug-like molecule binds to a specific protein target is a core problem in
drug discovery. An extremely fast computational binding method would enable key …
drug discovery. An extremely fast computational binding method would enable key …
Pure transformers are powerful graph learners
We show that standard Transformers without graph-specific modifications can lead to
promising results in graph learning both in theory and practice. Given a graph, we simply …
promising results in graph learning both in theory and practice. Given a graph, we simply …
Alias-free generative adversarial networks
We observe that despite their hierarchical convolutional nature, the synthesis process of
typical generative adversarial networks depends on absolute pixel coordinates in an …
typical generative adversarial networks depends on absolute pixel coordinates in an …
Cliport: What and where pathways for robotic manipulation
How can we imbue robots with the ability to manipulate objects precisely but also to reason
about them in terms of abstract concepts? Recent works in manipulation have shown that …
about them in terms of abstract concepts? Recent works in manipulation have shown that …
Spherical fourier neural operators: Learning stable dynamics on the sphere
Abstract Fourier Neural Operators (FNOs) have proven to be an efficient and effective
method for resolution-independent operator learning in a broad variety of application areas …
method for resolution-independent operator learning in a broad variety of application areas …
Perceiver: General perception with iterative attention
Biological systems understand the world by simultaneously processing high-dimensional
inputs from modalities as diverse as vision, audition, touch, proprioception, etc. The …
inputs from modalities as diverse as vision, audition, touch, proprioception, etc. The …