Recipe for a general, powerful, scalable graph transformer
We propose a recipe on how to build a general, powerful, scalable (GPS) graph Transformer
with linear complexity and state-of-the-art results on a diverse set of benchmarks. Graph …
with linear complexity and state-of-the-art results on a diverse set of benchmarks. Graph …
How powerful are spectral graph neural networks
Abstract Spectral Graph Neural Network is a kind of Graph Neural Network (GNN) based on
graph signal filters. Some models able to learn arbitrary spectral filters have emerged …
graph signal filters. Some models able to learn arbitrary spectral filters have emerged …
[HTML][HTML] Artificial neural networks in supply chain management, a review
Abstract Artificial Neural Networks (ANNs) are a type of machine learning algorithm inspired
by the structure and function of the human brain. In the context of supply chain management …
by the structure and function of the human brain. In the context of supply chain management …
Graph neural networks for link prediction with subgraph sketching
Many Graph Neural Networks (GNNs) perform poorly compared to simple heuristics on Link
Prediction (LP) tasks. This is due to limitations in expressive power such as the inability to …
Prediction (LP) tasks. This is due to limitations in expressive power such as the inability to …
How powerful are k-hop message passing graph neural networks
The most popular design paradigm for Graph Neural Networks (GNNs) is 1-hop message
passing---aggregating information from 1-hop neighbors repeatedly. However, the …
passing---aggregating information from 1-hop neighbors repeatedly. However, the …
Evaluating graph neural networks for link prediction: Current pitfalls and new benchmarking
Link prediction attempts to predict whether an unseen edge exists based on only a portion of
the graph. A flurry of methods has been created in recent years that attempt to make use of …
the graph. A flurry of methods has been created in recent years that attempt to make use of …
Linkless link prediction via relational distillation
Abstract Graph Neural Networks (GNNs) have shown exceptional performance in the task of
link prediction. Despite their effectiveness, the high latency brought by non-trivial …
link prediction. Despite their effectiveness, the high latency brought by non-trivial …
Towards foundation models for knowledge graph reasoning
Foundation models in language and vision have the ability to run inference on any textual
and visual inputs thanks to the transferable representations such as a vocabulary of tokens …
and visual inputs thanks to the transferable representations such as a vocabulary of tokens …
Neural common neighbor with completion for link prediction
Despite its outstanding performance in various graph tasks, vanilla Message Passing Neural
Network (MPNN) usually fails in link prediction tasks, as it only uses representations of two …
Network (MPNN) usually fails in link prediction tasks, as it only uses representations of two …
A survey on graph representation learning methods
Graph representation learning has been a very active research area in recent years. The
goal of graph representation learning is to generate graph representation vectors that …
goal of graph representation learning is to generate graph representation vectors that …