Diffusion models: A comprehensive survey of methods and applications

L Yang, Z Zhang, Y Song, S Hong, R Xu, Y Zhao… - ACM Computing …, 2023 - dl.acm.org
Diffusion models have emerged as a powerful new family of deep generative models with
record-breaking performance in many applications, including image synthesis, video …

A survey on video diffusion models

Z **ng, Q Feng, H Chen, Q Dai, H Hu, H Xu… - ACM Computing …, 2024 - dl.acm.org
The recent wave of AI-generated content (AIGC) has witnessed substantial success in
computer vision, with the diffusion model playing a crucial role in this achievement. Due to …

Align your latents: High-resolution video synthesis with latent diffusion models

A Blattmann, R Rombach, H Ling… - Proceedings of the …, 2023 - openaccess.thecvf.com
Abstract Latent Diffusion Models (LDMs) enable high-quality image synthesis while avoiding
excessive compute demands by training a diffusion model in a compressed lower …

Scaling up gans for text-to-image synthesis

M Kang, JY Zhu, R Zhang, J Park… - Proceedings of the …, 2023 - openaccess.thecvf.com
The recent success of text-to-image synthesis has taken the world by storm and captured the
general public's imagination. From a technical standpoint, it also marked a drastic change in …

Adversarial diffusion distillation

A Sauer, D Lorenz, A Blattmann… - European Conference on …, 2024 - Springer
Abstract We introduce Adversarial Diffusion Distillation (ADD), a novel training approach that
efficiently samples large-scale foundational image diffusion models in just 1–4 steps while …

Latent consistency models: Synthesizing high-resolution images with few-step inference

S Luo, Y Tan, L Huang, J Li, H Zhao - arxiv preprint arxiv:2310.04378, 2023 - arxiv.org
Latent Diffusion models (LDMs) have achieved remarkable results in synthesizing high-
resolution images. However, the iterative sampling process is computationally intensive and …

One-step diffusion with distribution matching distillation

T Yin, M Gharbi, R Zhang… - Proceedings of the …, 2024 - openaccess.thecvf.com
Diffusion models generate high-quality images but require dozens of forward passes. We
introduce Distribution Matching Distillation (DMD) a procedure to transform a diffusion model …

Stylegan-t: Unlocking the power of gans for fast large-scale text-to-image synthesis

A Sauer, T Karras, S Laine… - … on machine learning, 2023 - proceedings.mlr.press
Text-to-image synthesis has recently seen significant progress thanks to large pretrained
language models, large-scale training data, and the introduction of scalable model families …

simple diffusion: End-to-end diffusion for high resolution images

E Hoogeboom, J Heek… - … Conference on Machine …, 2023 - proceedings.mlr.press
Currently, applying diffusion models in pixel space of high resolution images is difficult.
Instead, existing approaches focus on diffusion in lower dimensional spaces (latent …

Efficient spatially sparse inference for conditional gans and diffusion models

M Li, J Lin, C Meng, S Ermon… - Advances in neural …, 2022 - proceedings.neurips.cc
During image editing, existing deep generative models tend to re-synthesize the entire
output from scratch, including the unedited regions. This leads to a significant waste of …