A review of physics-informed machine learning in fluid mechanics

P Sharma, WT Chung, B Akoush, M Ihme - Energies, 2023 - mdpi.com
Physics-informed machine-learning (PIML) enables the integration of domain knowledge
with machine learning (ML) algorithms, which results in higher data efficiency and more …

Physics-informed neural operator for learning partial differential equations

Z Li, H Zheng, N Kovachki, D **, H Chen… - ACM/JMS Journal of …, 2024 - dl.acm.org
In this article, we propose physics-informed neural operators (PINO) that combine training
data and physics constraints to learn the solution operator of a given family of parametric …

Neural operator: Learning maps between function spaces with applications to pdes

N Kovachki, Z Li, B Liu, K Azizzadenesheli… - Journal of Machine …, 2023 - jmlr.org
The classical development of neural networks has primarily focused on learning map**s
between finite dimensional Euclidean spaces or finite sets. We propose a generalization of …

Pde-refiner: Achieving accurate long rollouts with neural pde solvers

P Lippe, B Veeling, P Perdikaris… - Advances in …, 2023 - proceedings.neurips.cc
Time-dependent partial differential equations (PDEs) are ubiquitous in science and
engineering. Recently, mostly due to the high computational cost of traditional solution …

Machine learning–accelerated computational fluid dynamics

D Kochkov, JA Smith, A Alieva… - Proceedings of the …, 2021 - National Acad Sciences
Numerical simulation of fluids plays an essential role in modeling many physical
phenomena, such as weather, climate, aerodynamics, and plasma physics. Fluids are well …

Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations

N McGreivy, A Hakim - Nature Machine Intelligence, 2024 - nature.com
One of the most promising applications of machine learning in computational physics is to
accelerate the solution of partial differential equations (PDEs). The key objective of machine …

Recent advances on machine learning for computational fluid dynamics: A survey

H Wang, Y Cao, Z Huang, Y Liu, P Hu, X Luo… - arxiv preprint arxiv …, 2024 - arxiv.org
This paper explores the recent advancements in enhancing Computational Fluid Dynamics
(CFD) tasks through Machine Learning (ML) techniques. We begin by introducing …

A physics-informed diffusion model for high-fidelity flow field reconstruction

D Shu, Z Li, AB Farimani - Journal of Computational Physics, 2023 - Elsevier
Abstract Machine learning models are gaining increasing popularity in the domain of fluid
dynamics for their potential to accelerate the production of high-fidelity computational fluid …

Clifford neural layers for pde modeling

J Brandstetter, R Berg, M Welling, JK Gupta - arxiv preprint arxiv …, 2022 - arxiv.org
Partial differential equations (PDEs) see widespread use in sciences and engineering to
describe simulation of physical processes as scalar and vector fields interacting and …

Physics-based deep learning

N Thuerey, P Holl, M Mueller, P Schnell, F Trost… - arxiv preprint arxiv …, 2021 - arxiv.org
This digital book contains a practical and comprehensive introduction of everything related
to deep learning in the context of physical simulations. As much as possible, all topics come …