A survey of deep active learning

P Ren, Y **ao, X Chang, PY Huang, Z Li… - ACM computing …, 2021 - dl.acm.org
Active learning (AL) attempts to maximize a model's performance gain while annotating the
fewest samples possible. Deep learning (DL) is greedy for data and requires a large amount …

A brief introduction to weakly supervised learning

ZH Zhou - National science review, 2018 - academic.oup.com
Supervised learning techniques construct predictive models by learning from a large
number of training examples, where each training example has a label indicating its ground …

What is semantic communication? A view on conveying meaning in the era of machine intelligence

Q Lan, D Wen, Z Zhang, Q Zeng, X Chen… - Journal of …, 2021 - ieeexplore.ieee.org
In the 1940s, Claude Shannon developed the information theory focusing on quantifying the
maximum data rate that can be supported by a communication channel. Guided by this …

Autonomous experimentation systems for materials development: A community perspective

E Stach, B DeCost, AG Kusne, J Hattrick-Simpers… - Matter, 2021 - cell.com
Solutions to many of the world's problems depend upon materials research and
development. However, advanced materials can take decades to discover and decades …

A survey of active learning for natural language processing

Z Zhang, E Strubell, E Hovy - arxiv preprint arxiv:2210.10109, 2022 - arxiv.org
In this work, we provide a survey of active learning (AL) for its applications in natural
language processing (NLP). In addition to a fine-grained categorization of query strategies …

Learning loss for active learning

D Yoo, IS Kweon - … of the IEEE/CVF conference on …, 2019 - openaccess.thecvf.com
The performance of deep neural networks improves with more annotated data. The problem
is that the budget for annotation is limited. One solution to this is active learning, where a …

A survey on data collection for machine learning: a big data-ai integration perspective

Y Roh, G Heo, SE Whang - IEEE Transactions on Knowledge …, 2019 - ieeexplore.ieee.org
Data collection is a major bottleneck in machine learning and an active research topic in
multiple communities. There are largely two reasons data collection has recently become a …

Accurate screening of COVID-19 using attention-based deep 3D multiple instance learning

Z Han, B Wei, Y Hong, T Li, J Cong… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
Automated Screening of COVID-19 from chest CT is of emergency and importance during
the outbreak of SARS-CoV-2 worldwide in 2020. However, accurate screening of COVID-19 …

Multiple instance active learning for object detection

T Yuan, F Wan, M Fu, J Liu, S Xu… - Proceedings of the …, 2021 - openaccess.thecvf.com
Despite the substantial progress of active learning for image recognition, there still lacks an
instance-level active learning method specified for object detection. In this paper, we …

Multiple instance learning: A survey of problem characteristics and applications

MA Carbonneau, V Cheplygina, E Granger, G Gagnon - Pattern recognition, 2018 - Elsevier
Multiple instance learning (MIL) is a form of weakly supervised learning where training
instances are arranged in sets, called bags, and a label is provided for the entire bag. This …