Federated survival forests

A Archetti, M Matteucci - 2023 International Joint Conference …, 2023 - ieeexplore.ieee.org
Survival analysis is a subfield of statistics concerned with modeling the occurrence time of a
particular event of interest for a population. Survival analysis found widespread applications …

Scaling survival analysis in healthcare with federated survival forests: A comparative study on heart failure and breast cancer genomics

A Archetti, F Ieva, M Matteucci - Future Generation Computer Systems, 2023 - Elsevier
Survival analysis is a fundamental tool in medicine, modeling the time until an event of
interest occurs in a population. However, in real-world applications, survival data are often …

FlocOff: Data heterogeneity resilient federated learning with communication-efficient edge offloading

M Ma, C Gong, L Zeng, Y Yang… - IEEE Journal on Selected …, 2024 - ieeexplore.ieee.org
Federated Learning (FL) has emerged as a fundamental learning paradigm to harness
massive data scattered at geo-distributed edge devices in a privacy-preserving way. Given …

Bridging the gap: improve neural survival models with interpolation techniques

A Archetti, F Stranieri, M Matteucci - Progress in Artificial Intelligence, 2024 - Springer
Survival analysis is an essential tool in healthcare for risk assessment, assisting clinicians in
their evaluation and decision making processes. Therefore, the importance of using …

Deep survival analysis for healthcare: An empirical study on post-processing techniques

A Archetti, F Stranieri, M Matteucci - CEUR WORKSHOP …, 2023 - boa.unimib.it
Survival analysis is a crucial tool in healthcare, allowing us to understand and predict time-to-
event occurrences using statistical and machine-learning techniques. As deep learning …

[PDF][PDF] Feature norm regularized federated learning: utilizing data disparities for model performance gains

K Hu, L **ang, P Tang, W Qiu - Proceedings of the Thirty-Third International …, 2024 - ijcai.org
Federated learning (FL) is a machine learning paradigm that aggregates knowledge and
utilizes computational power from multiple participants to train a global model. However, a …

Feature Norm Regularized Federated Learning: Transforming Skewed Distributions into Global Insights

K Hu, WD Qiu, P Tang - arxiv preprint arxiv:2312.06951, 2023 - arxiv.org
In the field of federated learning, addressing non-independent and identically distributed
(non-iid) data remains a quintessential challenge for improving global model performance …

Algorithm for Constructing the Hazard Function of the Extended Cox Model and its Application to the Prostate Cancer Patient Database

II Mikulik, GM Zharinov, AY Kneev - … Research (Rostov-on-Don), 2024 - vestnik-donstu.ru
Introduction. In medicine and related industries, bioinspired approaches are used for the
survival analysis, among which the Cox regression model holds a specific place. The …

[HTML][HTML] Алгоритм построения функции риска расширенной модели Кокса и его применение на базе данных больных раком предстательной железы

ИИ Микулик, ГМ Жаринов… - … Research (Rostov-on-Don), 2024 - cyberleninka.ru
Введение. В медицине и связанных с нею отраслях для анализа выживаемости
используются биоинспирированные подходы, среди которых особое место занимает …