Gradient regularity in mixed local and nonlocal problems

C De Filippis, G Mingione - Mathematische Annalen, 2024 - Springer
Minimizers of functionals of the type w ↦ ∫ Ω [ | D w | p - f w ] d x + ∫ R n ∫ R n | w ( x ) - w (
y ) | γ | x - y | n + s γ d x d y \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} …

[HTML][HTML] Hölder regularity for nonlocal double phase equations

C De Filippis, G Palatucci - Journal of Differential Equations, 2019 - Elsevier
We prove some regularity estimates for viscosity solutions to a class of possible degenerate
and singular integro-differential equations whose leading operator switches between two …

[HTML][HTML] Fractional double-phase patterns: concentration and multiplicity of solutions

V Ambrosio, VD Rădulescu - Journal de Mathématiques Pures et …, 2020 - Elsevier
We consider the following class of fractional problems with unbalanced growth:{(− Δ) ps
u+(− Δ) qs u+ V (ε x)(| u| p− 2 u+| u| q− 2 u)= f (u) in RN, u∈ W s, p (RN)∩ W s, q (RN), u> 0 …

Hölder regularity for weak solutions to nonlocal double phase problems

SS Byun, J Ok, K Song - Journal de Mathématiques Pures et Appliquées, 2022 - Elsevier
We prove local boundedness and Hölder continuity for weak solutions to nonlocal double
phase problems concerning the following fractional energy functional∫ R n∫ R n| v (x)− v …

The Wiener criterion for nonlocal Dirichlet problems

M Kim, KA Lee, SC Lee - Communications in Mathematical Physics, 2023 - Springer
We study the boundary behavior of solutions to the Dirichlet problems for integro-differential
operators with order of differentiability s∈(0, 1) and summability p> 1. We establish a …

Nonlocal Harnack inequalities in the Heisenberg group

G Palatucci, M Piccinini - Calculus of Variations and Partial Differential …, 2022 - Springer
We deal with a wide class of nonlinear integro-differential problems in the Heisenberg-Weyl
group H n, whose prototype is the Dirichlet problem for the p-fractional subLaplace equation …

Concentration of positive solutions for a class of fractional p-Kirchhoff type equations

V Ambrosio, T Isernia, VD Radulescu - Proceedings of the Royal …, 2021 - cambridge.org
We study the existence and concentration of positive solutions for the following class of
fractional p-Kirchhoff type problems: where ɛ is a small positive parameter, a and b are …

Hölder continuity and boundedness estimates for nonlinear fractional equations in the Heisenberg group

M Manfredini, G Palatucci, M Piccinini… - The Journal of Geometric …, 2023 - Springer
We extend the celebrate De Giorgi-Nash-Moser theory to a wide class of nonlinear
equations driven by nonlocal, possibly degenerate, integro-differential operators, whose …

Mixed local and nonlocal equations with measure data

SS Byun, K Song - Calculus of Variations and Partial Differential …, 2023 - Springer
We study nonlinear measure data problems involving elliptic operators modeled after the
mixed local and nonlocal p-Laplacian. We establish existence, regularity and Wolff potential …

Self-improving inequalities for bounded weak solutions to nonlocal double phase equations

JM Scott, T Mengesha - arxiv preprint arxiv:2011.11466, 2020 - arxiv.org
We prove higher Sobolev regularity for bounded weak solutions to a class of nonlinear
nonlocal integro-differential equations. The leading operator exhibits nonuniform growth …