Multimodal machine learning: A survey and taxonomy

T Baltrušaitis, C Ahuja… - IEEE transactions on …, 2018 - ieeexplore.ieee.org
Our experience of the world is multimodal-we see objects, hear sounds, feel texture, smell
odors, and taste flavors. Modality refers to the way in which something happens or is …

Foundations & trends in multimodal machine learning: Principles, challenges, and open questions

PP Liang, A Zadeh, LP Morency - ACM Computing Surveys, 2024 - dl.acm.org
Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design
computer agents with intelligent capabilities such as understanding, reasoning, and learning …

A review of affective computing: From unimodal analysis to multimodal fusion

S Poria, E Cambria, R Bajpai, A Hussain - Information fusion, 2017 - Elsevier
Affective computing is an emerging interdisciplinary research field bringing together
researchers and practitioners from various fields, ranging from artificial intelligence, natural …

A review on multimodal medical image fusion: Compendious analysis of medical modalities, multimodal databases, fusion techniques and quality metrics

MA Azam, KB Khan, S Salahuddin, E Rehman… - Computers in biology …, 2022 - Elsevier
Background and objectives Over the past two decades, medical imaging has been
extensively apply to diagnose diseases. Medical experts continue to have difficulties for …

Deep multimodal learning: A survey on recent advances and trends

D Ramachandram, GW Taylor - IEEE signal processing …, 2017 - ieeexplore.ieee.org
The success of deep learning has been a catalyst to solving increasingly complex machine-
learning problems, which often involve multiple data modalities. We review recent advances …

Trusted multi-view classification with dynamic evidential fusion

Z Han, C Zhang, H Fu, JT Zhou - IEEE transactions on pattern …, 2022 - ieeexplore.ieee.org
Existing multi-view classification algorithms focus on promoting accuracy by exploiting
different views, typically integrating them into common representations for follow-up tasks …

Foundations and Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions

PP Liang, A Zadeh, LP Morency - arxiv preprint arxiv:2209.03430, 2022 - arxiv.org
Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design
computer agents with intelligent capabilities such as understanding, reasoning, and learning …

Deep multimodal fusion by channel exchanging

Y Wang, W Huang, F Sun, T Xu… - Advances in neural …, 2020 - proceedings.neurips.cc
Deep multimodal fusion by using multiple sources of data for classification or regression has
exhibited a clear advantage over the unimodal counterpart on various applications. Yet …

Bi-bimodal modality fusion for correlation-controlled multimodal sentiment analysis

W Han, H Chen, A Gelbukh, A Zadeh… - Proceedings of the …, 2021 - dl.acm.org
Multimodal sentiment analysis aims to extract and integrate semantic information collected
from multiple modalities to recognize the expressed emotions and sentiment in multimodal …

[HTML][HTML] Conversational memory network for emotion recognition in dyadic dialogue videos

D Hazarika, S Poria, A Zadeh, E Cambria… - Proceedings of the …, 2018 - ncbi.nlm.nih.gov
Emotion recognition in conversations is crucial for the development of empathetic machines.
Present methods mostly ignore the role of inter-speaker dependency relations while …