Artificial intelligence for digital and computational pathology

AH Song, G Jaume, DFK Williamson, MY Lu… - Nature Reviews …, 2023 - nature.com
Advances in digitizing tissue slides and the fast-paced progress in artificial intelligence,
including deep learning, have boosted the field of computational pathology. This field holds …

[HTML][HTML] A review of uncertainty estimation and its application in medical imaging

K Zou, Z Chen, X Yuan, X Shen, M Wang, H Fu - Meta-Radiology, 2023 - Elsevier
The use of AI systems in healthcare for the early screening of diseases is of great clinical
importance. Deep learning has shown great promise in medical imaging, but the reliability …

Deep semi-supervised learning for medical image segmentation: A review

K Han, VS Sheng, Y Song, Y Liu, C Qiu, S Ma… - Expert Systems with …, 2024 - Elsevier
Deep learning has recently demonstrated considerable promise for a variety of computer
vision tasks. However, in many practical applications, large-scale labeled datasets are not …

[HTML][HTML] Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis

B Lambert, F Forbes, S Doyle, H Dehaene… - Artificial Intelligence in …, 2024 - Elsevier
The full acceptance of Deep Learning (DL) models in the clinical field is rather low with
respect to the quantity of high-performing solutions reported in the literature. End users are …

Uncertainty-inspired open set learning for retinal anomaly identification

M Wang, T Lin, L Wang, A Lin, K Zou, X Xu… - Nature …, 2023 - nature.com
Failure to recognize samples from the classes unseen during training is a major limitation of
artificial intelligence in the real-world implementation for recognition and classification of …

[HTML][HTML] Deep learning for lung cancer diagnosis, prognosis and prediction using histological and cytological images: a systematic review

A Davri, E Birbas, T Kanavos, G Ntritsos, N Giannakeas… - Cancers, 2023 - mdpi.com
Simple Summary Lung cancer is one of the most common and deadly malignancies
worldwide. Microscopic examination of histological and cytological lung specimens can be a …

Unleashing the potential of AI for pathology: challenges and recommendations

A Asif, K Rajpoot, S Graham, D Snead… - The Journal of …, 2023 - Wiley Online Library
Computational pathology is currently witnessing a surge in the development of AI
techniques, offering promise for achieving breakthroughs and significantly impacting the …

A review of uncertainty quantification in medical image analysis: Probabilistic and non-probabilistic methods

L Huang, S Ruan, Y **ng, M Feng - Medical Image Analysis, 2024 - Elsevier
The comprehensive integration of machine learning healthcare models within clinical
practice remains suboptimal, notwithstanding the proliferation of high-performing solutions …

Artificial intelligence and endo-histo-omics: new dimensions of precision endoscopy and histology in inflammatory bowel disease

M Iacucci, G Santacroce, I Zammarchi… - The Lancet …, 2024 - thelancet.com
Integrating artificial intelligence into inflammatory bowel disease (IBD) has the potential to
revolutionise clinical practice and research. Artificial intelligence harnesses advanced …

A framework for evaluating clinical artificial intelligence systems without ground-truth annotations

D Kiyasseh, A Cohen, C Jiang, N Altieri - Nature Communications, 2024 - nature.com
A clinical artificial intelligence (AI) system is often validated on data withheld during its
development. This provides an estimate of its performance upon future deployment on data …