Machine learning methods for small data challenges in molecular science

B Dou, Z Zhu, E Merkurjev, L Ke, L Chen… - Chemical …, 2023 - ACS Publications
Small data are often used in scientific and engineering research due to the presence of
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …

A comprehensive survey on deep graph representation learning

W Ju, Z Fang, Y Gu, Z Liu, Q Long, Z Qiao, Y Qin… - Neural Networks, 2024 - Elsevier
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …

A comprehensive survey on trustworthy graph neural networks: Privacy, robustness, fairness, and explainability

E Dai, T Zhao, H Zhu, J Xu, Z Guo, H Liu, J Tang… - Machine Intelligence …, 2024 - Springer
Graph neural networks (GNNs) have made rapid developments in the recent years. Due to
their great ability in modeling graph-structured data, GNNs are vastly used in various …

Are defenses for graph neural networks robust?

F Mujkanovic, S Geisler… - Advances in Neural …, 2022 - proceedings.neurips.cc
A cursory reading of the literature suggests that we have made a lot of progress in designing
effective adversarial defenses for Graph Neural Networks (GNNs). Yet, the standard …

Demystifying structural disparity in graph neural networks: Can one size fit all?

H Mao, Z Chen, W **, H Han, Y Ma… - Advances in neural …, 2024 - proceedings.neurips.cc
Abstract Recent studies on Graph Neural Networks (GNNs) provide both empirical and
theoretical evidence supporting their effectiveness in capturing structural patterns on both …

Trustworthy graph neural networks: Aspects, methods and trends

H Zhang, B Wu, X Yuan, S Pan, H Tong… - arxiv preprint arxiv …, 2022 - arxiv.org
Graph neural networks (GNNs) have emerged as a series of competent graph learning
methods for diverse real-world scenarios, ranging from daily applications like …

Adversarial attack and defense on graph data: A survey

L Sun, Y Dou, C Yang, K Zhang, J Wang… - … on Knowledge and …, 2022 - ieeexplore.ieee.org
Deep neural networks (DNNs) have been widely applied to various applications, including
image classification, text generation, audio recognition, and graph data analysis. However …

Adversarial training for graph neural networks: Pitfalls, solutions, and new directions

L Gosch, S Geisler, D Sturm… - Advances in …, 2024 - proceedings.neurips.cc
Despite its success in the image domain, adversarial training did not (yet) stand out as an
effective defense for Graph Neural Networks (GNNs) against graph structure perturbations …

Adversarial robustness in graph neural networks: A Hamiltonian approach

K Zhao, Q Kang, Y Song, R She… - Advances in Neural …, 2024 - proceedings.neurips.cc
Graph neural networks (GNNs) are vulnerable to adversarial perturbations, including those
that affect both node features and graph topology. This paper investigates GNNs derived …

Empowering graph representation learning with test-time graph transformation

W **, T Zhao, J Ding, Y Liu, J Tang, N Shah - arxiv preprint arxiv …, 2022 - arxiv.org
As powerful tools for representation learning on graphs, graph neural networks (GNNs) have
facilitated various applications from drug discovery to recommender systems. Nevertheless …