[HTML][HTML] A review of ensemble learning and data augmentation models for class imbalanced problems: combination, implementation and evaluation

AA Khan, O Chaudhari, R Chandra - Expert Systems with Applications, 2024 - Elsevier
Class imbalance (CI) in classification problems arises when the number of observations
belonging to one class is lower than the other. Ensemble learning combines multiple models …

[HTML][HTML] From concept drift to model degradation: An overview on performance-aware drift detectors

F Bayram, BS Ahmed, A Kassler - Knowledge-Based Systems, 2022 - Elsevier
The dynamicity of real-world systems poses a significant challenge to deployed predictive
machine learning (ML) models. Changes in the system on which the ML model has been …

A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning

D Elreedy, AF Atiya, F Kamalov - Machine Learning, 2024 - Springer
Class imbalance occurs when the class distribution is not equal. Namely, one class is under-
represented (minority class), and the other class has significantly more samples in the data …

An effective intrusion detection approach using SVM with naïve Bayes feature embedding

J Gu, S Lu - Computers & Security, 2021 - Elsevier
Network security has become increasingly important in recent decades, while intrusion
detection system plays a critical role in protecting it. Various machine learning techniques …

The phenomenon of learning at a distance through emergency remote teaching amidst the pandemic crisis

A Abel Jr - Asian Journal of Distance Education, 2020 - asianjde.com
The threat brought about by Corona Virus or COVID-19 had made a huge impact not only on
the economic, tourism, and health sectors, but it also hardly hit the education system of the …

[PDF][PDF] A detailed analysis of CICIDS2017 dataset for designing Intrusion Detection Systems

R Panigrahi, S Borah - International Journal of Engineering & …, 2018 - researchgate.net
Abstract Many Intrusion Detection Systems (IDS) has been proposed in the current decade.
To evaluate the effectiveness of the IDS Canadian Institute of Cybersecurity presented a …

[HTML][HTML] Concept drift detection in data stream mining: A literature review

S Agrahari, AK Singh - Journal of King Saud University-Computer and …, 2022 - Elsevier
In recent years, the availability of time series streaming information has been growing
enormously. Learning from real-time data has been receiving increasingly more attention …

A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework

G Aguiar, B Krawczyk, A Cano - Machine learning, 2024 - Springer
Class imbalance poses new challenges when it comes to classifying data streams. Many
algorithms recently proposed in the literature tackle this problem using a variety of data …

Spiking neural networks and online learning: An overview and perspectives

JL Lobo, J Del Ser, A Bifet, N Kasabov - Neural Networks, 2020 - Elsevier
Applications that generate huge amounts of data in the form of fast streams are becoming
increasingly prevalent, being therefore necessary to learn in an online manner. These …

ROSE: robust online self-adjusting ensemble for continual learning on imbalanced drifting data streams

A Cano, B Krawczyk - Machine Learning, 2022 - Springer
Data streams are potentially unbounded sequences of instances arriving over time to a
classifier. Designing algorithms that are capable of dealing with massive, rapidly arriving …