Recent advances and applications of deep learning methods in materials science
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
Applied machine learning as a driver for polymeric biomaterials design
Polymers are ubiquitous to almost every aspect of modern society and their use in medical
products is similarly pervasive. Despite this, the diversity in commercial polymers used in …
products is similarly pervasive. Despite this, the diversity in commercial polymers used in …
Computational discovery of transition-metal complexes: from high-throughput screening to machine learning
Transition-metal complexes are attractive targets for the design of catalysts and functional
materials. The behavior of the metal–organic bond, while very tunable for achieving target …
materials. The behavior of the metal–organic bond, while very tunable for achieving target …
Recent advances and applications of machine learning in solid-state materials science
One of the most exciting tools that have entered the material science toolbox in recent years
is machine learning. This collection of statistical methods has already proved to be capable …
is machine learning. This collection of statistical methods has already proved to be capable …
Recent advances in 2D material theory, synthesis, properties, and applications
Two-dimensional (2D) material research is rapidly evolving to broaden the spectrum of
emergent 2D systems. Here, we review recent advances in the theory, synthesis …
emergent 2D systems. Here, we review recent advances in the theory, synthesis …
Machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery
The modular nature of metal–organic frameworks (MOFs) enables synthetic control over
their physical and chemical properties, but it can be difficult to know which MOFs would be …
their physical and chemical properties, but it can be difficult to know which MOFs would be …
Data‐driven materials science: status, challenges, and perspectives
Data‐driven science is heralded as a new paradigm in materials science. In this field, data is
the new resource, and knowledge is extracted from materials datasets that are too big or …
the new resource, and knowledge is extracted from materials datasets that are too big or …
A critical review of machine learning of energy materials
Abstract Machine learning (ML) is rapidly revolutionizing many fields and is starting to
change landscapes for physics and chemistry. With its ability to solve complex tasks …
change landscapes for physics and chemistry. With its ability to solve complex tasks …
Target‐Driven Design of Deep‐UV Nonlinear Optical Materials via Interpretable Machine Learning
The development of a data‐driven science paradigm is greatly revolutionizing the process of
materials discovery. Particularly, exploring novel nonlinear optical (NLO) materials with the …
materials discovery. Particularly, exploring novel nonlinear optical (NLO) materials with the …
The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design
Abstract The Joint Automated Repository for Various Integrated Simulations (JARVIS) is an
integrated infrastructure to accelerate materials discovery and design using density …
integrated infrastructure to accelerate materials discovery and design using density …