Recent advances in 2D material theory, synthesis, properties, and applications

YC Lin, R Torsi, R Younas, CL Hinkle, AF Rigosi… - ACS …, 2023 - ACS Publications
Two-dimensional (2D) material research is rapidly evolving to broaden the spectrum of
emergent 2D systems. Here, we review recent advances in the theory, synthesis …

Recent advances and applications of deep learning methods in materials science

K Choudhary, B DeCost, C Chen, A Jain… - npj Computational …, 2022 - nature.com
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …

[HTML][HTML] Scope of machine learning in materials research—A review

MH Mobarak, MA Mimona, MA Islam, N Hossain… - Applied Surface Science …, 2023 - Elsevier
This comprehensive review investigates the multifaceted applications of machine learning in
materials research across six key dimensions, redefining the field's boundaries. It explains …

Applied machine learning as a driver for polymeric biomaterials design

SM McDonald, EK Augustine, Q Lanners… - Nature …, 2023 - nature.com
Polymers are ubiquitous to almost every aspect of modern society and their use in medical
products is similarly pervasive. Despite this, the diversity in commercial polymers used in …

Representations of materials for machine learning

J Damewood, J Karaguesian, JR Lunger… - Annual Review of …, 2023 - annualreviews.org
High-throughput data generation methods and machine learning (ML) algorithms have
given rise to a new era of computational materials science by learning the relations between …

Computational discovery of transition-metal complexes: from high-throughput screening to machine learning

A Nandy, C Duan, MG Taylor, F Liu, AH Steeves… - Chemical …, 2021 - ACS Publications
Transition-metal complexes are attractive targets for the design of catalysts and functional
materials. The behavior of the metal–organic bond, while very tunable for achieving target …

Target‐driven design of deep‐UV nonlinear optical materials via interpretable machine learning

M Wu, E Tikhonov, A Tudi, I Kruglov, X Hou… - Advanced …, 2023 - Wiley Online Library
The development of a data‐driven science paradigm is greatly revolutionizing the process of
materials discovery. Particularly, exploring novel nonlinear optical (NLO) materials with the …

Recent advances and applications of machine learning in solid-state materials science

J Schmidt, MRG Marques, S Botti… - npj computational …, 2019 - nature.com
One of the most exciting tools that have entered the material science toolbox in recent years
is machine learning. This collection of statistical methods has already proved to be capable …

Electronic-structure methods for materials design

N Marzari, A Ferretti, C Wolverton - Nature materials, 2021 - nature.com
The accuracy and efficiency of electronic-structure methods to understand, predict and
design the properties of materials has driven a new paradigm in research. Simulations can …

Data‐driven materials science: status, challenges, and perspectives

L Himanen, A Geurts, AS Foster, P Rinke - Advanced Science, 2019 - Wiley Online Library
Data‐driven science is heralded as a new paradigm in materials science. In this field, data is
the new resource, and knowledge is extracted from materials datasets that are too big or …