Graph neural networks in recommender systems: a survey
With the explosive growth of online information, recommender systems play a key role to
alleviate such information overload. Due to the important application value of recommender …
alleviate such information overload. Due to the important application value of recommender …
Interpretable deep learning: Interpretation, interpretability, trustworthiness, and beyond
Deep neural networks have been well-known for their superb handling of various machine
learning and artificial intelligence tasks. However, due to their over-parameterized black-box …
learning and artificial intelligence tasks. However, due to their over-parameterized black-box …
A general survey on attention mechanisms in deep learning
G Brauwers, F Frasincar - IEEE Transactions on Knowledge …, 2021 - ieeexplore.ieee.org
Attention is an important mechanism that can be employed for a variety of deep learning
models across many different domains and tasks. This survey provides an overview of the …
models across many different domains and tasks. This survey provides an overview of the …
A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation
Influenced by the great success of deep learning in computer vision and language
understanding, research in recommendation has shifted to inventing new recommender …
understanding, research in recommendation has shifted to inventing new recommender …
Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if
harnessed appropriately, may deliver the best of expectations over many application sectors …
harnessed appropriately, may deliver the best of expectations over many application sectors …
A historical perspective of explainable Artificial Intelligence
Abstract Explainability in Artificial Intelligence (AI) has been revived as a topic of active
research by the need of conveying safety and trust to users in the “how” and “why” of …
research by the need of conveying safety and trust to users in the “how” and “why” of …
Peeking inside the black-box: a survey on explainable artificial intelligence (XAI)
At the dawn of the fourth industrial revolution, we are witnessing a fast and widespread
adoption of artificial intelligence (AI) in our daily life, which contributes to accelerating the …
adoption of artificial intelligence (AI) in our daily life, which contributes to accelerating the …
Ripplenet: Propagating user preferences on the knowledge graph for recommender systems
To address the sparsity and cold start problem of collaborative filtering, researchers usually
make use of side information, such as social networks or item attributes, to improve …
make use of side information, such as social networks or item attributes, to improve …
Explainable recommendation: A survey and new perspectives
Explainable recommendation attempts to develop models that generate not only high-quality
recommendations but also intuitive explanations. The explanations may either be post-hoc …
recommendations but also intuitive explanations. The explanations may either be post-hoc …
A review-aware graph contrastive learning framework for recommendation
Most modern recommender systems predict users' preferences with two components: user
and item embedding learning, followed by the user-item interaction modeling. By utilizing …
and item embedding learning, followed by the user-item interaction modeling. By utilizing …