[HTML][HTML] Epileptic seizures detection using deep learning techniques: a review

A Shoeibi, M Khodatars, N Ghassemi, M Jafari… - International journal of …, 2021 - mdpi.com
A variety of screening approaches have been proposed to diagnose epileptic seizures,
using electroencephalography (EEG) and magnetic resonance imaging (MRI) modalities …

A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers

X Zhang, L Yao, X Wang, J Monaghan… - Journal of neural …, 2021 - iopscience.iop.org
Brain signals refer to the biometric information collected from the human brain. The research
on brain signals aims to discover the underlying neurological or physical status of the …

Applying deep learning for epilepsy seizure detection and brain map** visualization

MS Hossain, SU Amin, M Alsulaiman… - ACM Transactions on …, 2019 - dl.acm.org
Deep Convolutional Neural Network (CNN) has achieved remarkable results in computer
vision tasks for end-to-end learning. We evaluate here the power of a deep CNN to learn …

A multi-view deep learning framework for EEG seizure detection

Y Yuan, G Xun, K Jia, A Zhang - IEEE journal of biomedical and …, 2018 - ieeexplore.ieee.org
The recent advances in pervasive sensing technologies have enabled us to monitor and
analyze the multi-channel electroencephalogram (EEG) signals of epilepsy patients to …

[PDF][PDF] A survey on deep learning based brain computer interface: Recent advances and new frontiers

X Zhang, L Yao, X Wang, J Monaghan… - arxiv preprint arxiv …, 2019 - researchgate.net
Brain-Computer Interface (BCI) bridges human's neural world and the outer physical world
by decoding individuals' brain signals into commands recognizable by computer devices …

Accuracy enhancement of epileptic seizure detection: a deep learning approach with hardware realization of STFT

SM Beeraka, A Kumar, M Sameer, S Ghosh… - Circuits, Systems, and …, 2022 - Springer
Electroencephalogram (EEG) signals, generated during the neuron firing, are an effective
way of predicting such seizure and it is used widely in recent days for classifying and …

Artificial intelligence techniques for automated diagnosis of neurological disorders

U Raghavendra, UR Acharya, H Adeli - European neurology, 2020 - karger.com
Background: Authors have been advocating the research ideology that a computer-aided
diagnosis (CAD) system trained using lots of patient data and physiological signals and …

A recent investigation on detection and classification of epileptic seizure techniques using EEG signal

S Saminu, G Xu, Z Shuai, I Abd El Kader, AH Jabire… - Brain sciences, 2021 - mdpi.com
The benefits of early detection and classification of epileptic seizures in analysis, monitoring
and diagnosis for the realization and actualization of computer-aided devices and recent …

[HTML][HTML] Machine learning for detection of interictal epileptiform discharges

C da Silva Lourenço, MC Tjepkema-Cloostermans… - Clinical …, 2021 - Elsevier
The electroencephalogram (EEG) is a fundamental tool in the diagnosis and classification of
epilepsy. In particular, Interictal Epileptiform Discharges (IEDs) reflect an increased …

Deep learning for detection of focal epileptiform discharges from scalp EEG recordings

MC Tjepkema-Cloostermans, RCV de Carvalho… - Clinical …, 2018 - Elsevier
Objective Visual assessment of the EEG still outperforms current computer algorithms in
detecting epileptiform discharges. Deep learning is a promising novel approach, being able …