Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Epidemic spreading on higher-order networks
Gathering events, eg, going to gyms and meetings, are ubiquitous and crucial in the
spreading phenomena, which induce higher-order interactions, and thus can be described …
spreading phenomena, which induce higher-order interactions, and thus can be described …
[HTML][HTML] Networks beyond pairwise interactions: Structure and dynamics
The complexity of many biological, social and technological systems stems from the richness
of the interactions among their units. Over the past decades, a variety of complex systems …
of the interactions among their units. Over the past decades, a variety of complex systems …
Temporal graph benchmark for machine learning on temporal graphs
Abstract We present the Temporal Graph Benchmark (TGB), a collection of challenging and
diverse benchmark datasets for realistic, reproducible, and robust evaluation of machine …
diverse benchmark datasets for realistic, reproducible, and robust evaluation of machine …
Autonomous rhythmic activity in glioma networks drives brain tumour growth
D Hausmann, DC Hoffmann, V Venkataramani, E Jung… - Nature, 2023 - nature.com
Diffuse gliomas, particularly glioblastomas, are incurable brain tumours. They are
characterized by networks of interconnected brain tumour cells that communicate via Ca2+ …
characterized by networks of interconnected brain tumour cells that communicate via Ca2+ …
Graph neural networks: foundation, frontiers and applications
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …
recent years. Graph neural networks, also known as deep learning on graphs, graph …
A survey of graph neural network based recommendation in social networks
X Li, L Sun, M Ling, Y Peng - Neurocomputing, 2023 - Elsevier
With the widespread popularization of social network platforms, user-generated content and
other social network data are growing rapidly. It is difficult for social users to select interested …
other social network data are growing rapidly. It is difficult for social users to select interested …
Motif-based graph self-supervised learning for molecular property prediction
Predicting molecular properties with data-driven methods has drawn much attention in
recent years. Particularly, Graph Neural Networks (GNNs) have demonstrated remarkable …
recent years. Particularly, Graph Neural Networks (GNNs) have demonstrated remarkable …
Explainability in graph neural networks: A taxonomic survey
Deep learning methods are achieving ever-increasing performance on many artificial
intelligence tasks. A major limitation of deep models is that they are not amenable to …
intelligence tasks. A major limitation of deep models is that they are not amenable to …
Self-supervised multi-channel hypergraph convolutional network for social recommendation
Social relations are often used to improve recommendation quality when user-item
interaction data is sparse in recommender systems. Most existing social recommendation …
interaction data is sparse in recommender systems. Most existing social recommendation …
Gcc: Graph contrastive coding for graph neural network pre-training
Graph representation learning has emerged as a powerful technique for addressing real-
world problems. Various downstream graph learning tasks have benefited from its recent …
world problems. Various downstream graph learning tasks have benefited from its recent …