Machine learning and deep learning: A review of methods and applications
K Sharifani, M Amini - World Information Technology and …, 2023 - papers.ssrn.com
Abstract Machine learning and deep learning have rapidly emerged as powerful tools in
many fields, including image and speech recognition, natural language processing, and …
many fields, including image and speech recognition, natural language processing, and …
Data-centric artificial intelligence: A survey
Artificial Intelligence (AI) is making a profound impact in almost every domain. A vital enabler
of its great success is the availability of abundant and high-quality data for building machine …
of its great success is the availability of abundant and high-quality data for building machine …
Graph of thoughts: Solving elaborate problems with large language models
Abstract We introduce Graph of Thoughts (GoT): a framework that advances prompting
capabilities in large language models (LLMs) beyond those offered by paradigms such as …
capabilities in large language models (LLMs) beyond those offered by paradigms such as …
A review of graph neural networks: concepts, architectures, techniques, challenges, datasets, applications, and future directions
Deep learning has seen significant growth recently and is now applied to a wide range of
conventional use cases, including graphs. Graph data provides relational information …
conventional use cases, including graphs. Graph data provides relational information …
Spatio-temporal graph neural networks for predictive learning in urban computing: A survey
With recent advances in sensing technologies, a myriad of spatio-temporal data has been
generated and recorded in smart cities. Forecasting the evolution patterns of spatio-temporal …
generated and recorded in smart cities. Forecasting the evolution patterns of spatio-temporal …
Diffusion models: A comprehensive survey of methods and applications
Diffusion models have emerged as a powerful new family of deep generative models with
record-breaking performance in many applications, including image synthesis, video …
record-breaking performance in many applications, including image synthesis, video …
Graph neural networks for materials science and chemistry
Abstract Machine learning plays an increasingly important role in many areas of chemistry
and materials science, being used to predict materials properties, accelerate simulations …
and materials science, being used to predict materials properties, accelerate simulations …
A survey on oversmoothing in graph neural networks
Node features of graph neural networks (GNNs) tend to become more similar with the
increase of the network depth. This effect is known as over-smoothing, which we …
increase of the network depth. This effect is known as over-smoothing, which we …
Deep learning in mechanical metamaterials: from prediction and generation to inverse design
Mechanical metamaterials are meticulously designed structures with exceptional
mechanical properties determined by their microstructures and constituent materials …
mechanical properties determined by their microstructures and constituent materials …
Autonomous driving system: A comprehensive survey
Automation is increasingly at the forefront of transportation research, with the potential to
bring fully autonomous vehicles to our roads in the coming years. This comprehensive …
bring fully autonomous vehicles to our roads in the coming years. This comprehensive …